Pauline M. Snijder

Learn More
Hydrogen sulfide (H(2)S) can induce a hypometabolic, hibernation-like state in mammals when given in subtoxic concentrations. Pharmacologically reducing the demand for oxygen is a promising strategy to minimize unavoidable hypoxia-induced injury such as ischemia/reperfusion injury during renal transplantation. Here we show that H(2)S reduces metabolism in(More)
BACKGROUND Ischemia-reperfusion injury (IRI) is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S) is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration(More)
Hydrogen sulfide (H2 S) can induce a reversible hypometabolic state, which could protect against hypoxia. In this study we investigated whether H2 S could protect livers from ischemia/reperfusion injury (IRI). Male C57BL/6 mice were subjected to partial hepatic IRI for 60 min. Animals received 0 (IRI) or 100 ppm H2 S (IRI + H2 S) from 30 min prior to(More)
Hydrogen sulfide (H2S) is an endogenous gasotransmitter with physiologic functions similar to nitric oxide and carbon monoxide. Exogenous treatment with H2S can induce a reversible hypometabolic state, which can protect organs from ischemia/reperfusion injury, but whether cystathionine γ-lyase (CSE), which produces endogenous H2S, has similar protective(More)
Hypertension and proteinuria are important mediators of renal damage. Despite therapeutic interventions, the number of patients with end stage renal disease steadily increases. Hydrogen sulfide (H(2)S) is an endogenously produced gasotransmitter with vasodilatory, anti-inflammatory and antioxidant properties. These beneficial characteristics make H(2)S an(More)
BACKGROUND AND PURPOSE Hypertension is an important mediator of cardiac damage and remodelling. Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter with cardioprotective properties. However, it is not yet in clinical use. We, therefore, investigated the protective effects of sodium thiosulfate (STS), a clinically applicable H2 S donor(More)
Hydrogen sulfide (H2S), carbon monoxide (CO) and nitric oxide (NO) share signaling and vasorelaxant properties and are involved in proliferation and apoptosis. Inhibiting NO production or availability induces hypertension and proteinuria, which is prevented by concomitant blockade of the H2S producing enzyme cystathionine γ-lyase (CSE) by(More)
Once patients with kidney disease progress to end-stage renal failure, transplantation is the preferred option of treatment resulting in improved quality of life and reduced mortality compared to dialysis. Although 1-year survival has improved considerably, graft and patient survival in the long term have not been concurrent, and therefore new tools to(More)
  • 1