Learn More
The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases(More)
The cell envelope protects bacteria from their surroundings. Defects in its integrity or assembly are sensed by signal transduction systems, allowing cells to rapidly adjust. The Rcs phosphorelay responds to outer membrane (OM)- and peptidoglycan-related stress in enterobacteria. We elucidated how the OM lipoprotein RcsF, the upstream Rcs component, senses(More)
UNLABELLED Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces(More)
In Escherichia coli, DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide(More)
  • 1