Paulina Kasperkiewicz

Learn More
The paracaspase domain of MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a component of a gene translocation fused to the N-terminal domains of the cellular inhibitor of apoptosis protein 2. The paracaspase itself, commonly known as MALT1, participates in the NF-κB (nuclear factor κB) pathway, probably by driving survival(More)
Proteases recognize their endogenous substrates based largely on a sequence of proteinogenic amino acids that surrounds the cleavage site. Currently, several methods are available to determine protease substrate specificity based on approaches employing proteinogenic amino acids. The knowledge about the specificity of proteases can be significantly extended(More)
The exploration of protease substrate specificity is generally restricted to naturally occurring amino acids, limiting the degree of conformational space that can be surveyed. We substantially enhanced this by incorporating 102 unnatural amino acids to explore the S1-S4 pockets of human neutrophil elastase. This approach provides hybrid natural and(More)
Traditional combinatorial peptidyl substrate library approaches generally utilize natural amino acids, limiting the usefulness of this tool in generating selective substrates for proteases that share similar substrate specificity profiles. To address this limitation, we synthesized a Hybrid Combinatorial Substrate Library (HyCoSuL) with the general formula(More)
Positional scanning substrate combinatorial library (PS-SCL) is a powerful tool for studying substrate specificity of proteolytic enzymes. Here, we describe the protocol for analyzing S4-S2 pockets preferences of caspases using PS-SCL. Additionally, we describe procedures for the identification of optimal substrates sequence after PS-SCL, solid phase(More)
Substrate specificity of proteases can be determined using several methods among which the most frequently used are positional scanning library, proteomics and phage display. Classic approaches can deliver information about preferences for natural amino acids in binding pockets of virtually all proteases. However, recent studies demonstrate the ability to(More)
Human neutrophil serine protease 4 (NSP4), also known as PRSS57, is a recently discovered fourth member of the neutrophil serine proteases family. Although its biological function is not precisely defined, it is suggested to regulate neutrophil response and innate immune reactions. To create optimal substrates and visualization probes for NSP4 that(More)
Ubiquitin (Ub) and the Ub-like (Ubl) modifier interferon-stimulated gene 15 (ISG15) participate in the host defence of viral infections. Viruses, including the severe acute respiratory syndrome human coronavirus (SARS hCoV), have co-opted Ub-ISG15 conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory(More)
Legumain (AEP) is a lysosomal cysteine protease that was first characterized in leguminous seeds and later discovered in higher eukaryotes. AEP upregulation is linked to a number of diseases including inflammation, arteriosclerosis, and tumorigenesis. Thus this protease is an excellent molecular target for the development of new chemical markers. We(More)
Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice(More)