Learn More
Serotonin [5-hydroxytryptamine (5-HT)] modulates feeding activity, egg-laying, and mating behavior in the free-living nematode, Caenorhabditis elegans. We have cloned a novel receptor cDNA from C. elegans (5-HT2Ce) that has high sequence homology with 5-HT2 receptors from other species. When transiently expressed in COS-7 cells, 5-HT2Ce exhibited 5-HT(More)
An alignment of serotonin [5-hydroxytryptamine (5-HT)] G protein-coupled receptors identified a lysine at position 4.45 (helix 4) and a small polar residue (serine or cysteine) at 7.45 (helix 7) that occur exclusively in the 5-HT2 receptor family. Other serotonin receptors have a hydrophobic amino acid, typically a methionine, at 4.45 and an invariant(More)
Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly(More)
l-Glutamate is a major neurotransmitter of both vertebrates and invertebrates. Earlier studies have shown that glutamate stimulates neuromuscular activity in the bloodfluke, Schistosoma mansoni, but its mode of action is unknown. Here we describe a novel glutamate receptor in S. mansoni (SmGluR), the first of its kind to be identified in a parasitic(More)
Serotonin (5-hydroxytryptamine: 5HT) is an important neuroactive substance in the model roundworm, Caenorhabditis elegans. Aside from having effects in feeding and egg-laying, 5HT inhibits motility and also modulates several locomotory behaviors, notably food-induced slowing and foraging. Recent evidence showed that a serotonergic 5HT2-like receptor named(More)
A novel glutamate-binding protein was identified in Schistosoma mansoni. The protein (SmGBP) is related to metabotropic glutamate receptors from other species and has a predicted glutamate binding site located within a Venus Flytrap module but it lacks the heptahelical transmembrane segment that normally characterizes these receptors. The SmGBP cDNA was(More)
A dopamine receptor (SmD2) was cloned from adult Schistosoma mansoni. The receptor has the classical heptahelical topology of class A (rhodopsin-like) G protein-coupled receptors (GPCR) and shares sequence homology with D2-like receptors from other species. The full length SmD2 cDNA was expressed in the yeast Saccharomyces cerevisiae and mammalian HEK293(More)
Schistosomes have a well developed nervous system that coordinates virtually every activity of the parasite and therefore is considered to be a promising target for chemotherapeutic intervention. Neurotransmitter receptors, in particular those involved in neuromuscular control, are proven drug targets in other helminths but very few of these receptors have(More)
Serotonin is an important neurotransmitter in both vertebrates and invertebrates. In the parasitic flatworm, Schistosoma mansoni, serotonin stimulates worm movement and potentiates muscle contraction. A specific serotonin transporter (SmSERT) was previously cloned from S. mansoni and characterized in vitro. Here we conduct a first investigation of the(More)
Acetylcholine is the canonical excitatory neurotransmitter of the mammalian neuromuscular system. However, in the trematode parasite Schistosoma mansoni, cholinergic stimulation leads to muscle relaxation and a flaccid paralysis, suggesting an inhibitory mode of action. Information about the pharmacological mechanism of this inhibition is lacking. Here, we(More)