Learn More
An accurate estimation of crop evapotranspiration (ET c) is very useful for appropriate water management; hence, an accurate and user-friendly model is needed to support related irrigation decisions. In this view, a study was developed aimed at estimating the ET c of winter wheat–summer maize crop sequence in the North China through eddy covariance(More)
The dual crop coefficient approach accounts separately for plant transpiration and soil evaporation by using the basal crop coefficient and the evaporation coefficient, respectively. The SIMDualKc model, which performs the soil water balance simulation with estimation of the actual crop evapotranspiration (ET) with the dual crop coefficient approach, was(More)
Various maize irrigation treatments including full and deficit irrigation were used to calibrate and validate the soil water balance and irrigation scheduling model SIMDualKc at Paysandú, western Uruguay. The model adopts the dual crop coefficient approach to partition actual evapotranspiration (ET c act) into actual transpiration (T c act) and soil(More)
Coping with water scarcity using supplemental irrigation of wheat (Triticum aestivum L.) in the semi-arid northeast Syria is a great challenge for sustainable water use in agriculture. Graded borders and set sprinkler systems were compared using multi-criteria analysis. Alternative solutions for surface irrigation and for sprinkler systems were developed(More)
The AquaCrop model was parameterized and evaluated using data relative to supplemental irrigated vining pea for industry using observations in farmers’ fields located in the Ribatejo region, Portugal. Data refers to field observations relative to leaf area index (LAI), soil water content, biomass and final yield relative to two contrasting rainfall years,(More)
  • 1