Learn More
Although it is known that mechanical forces are needed for normal bone development, the current understanding of how biophysical stimuli are interpreted by and integrated with genetic regulatory mechanisms is limited. Mechanical forces are thought to be mediated in cells by "mechanosensitive" genes, but it is a challenge to demonstrate that the genetic(More)
Canonical Wnt/beta-catenin signaling regulates the activation of the myogenic determination gene Myf5 at the onset of myogenesis, but the underlying molecular mechanism is unknown. Here, we report that the Wnt signal is transduced in muscle progenitor cells by at least two Frizzled (Fz) receptors (Fz1 and/or Fz6), through the canonical beta-catenin pathway,(More)
We have performed a set of finite element analyses of embryonic chick hindlimb skeletal rudiments at several time points during development, around the time of initial bone formation. Using optical projection tomography, we created anatomically accurate rudiment and muscle morphologies for each stage. The changes in pattern and magnitude of biophysical(More)
A range of clinical conditions in which fetal movement is reduced or prevented can have a severe effect on skeletal development. Animal models have been instrumental to our understanding of the interplay between mechanical forces and skeletal development, particularly the mouse and the chick model systems. In the chick, the most commonly used means of(More)
The sensitivity of Bacillus subtilis to hydrogen peroxide (oxidative stress) was found to vary with the position of the culture in the growth cycle. The most dramatic change occurred at the stationary phase, when the cells became totally resistant to 10 mM H2O2, in contrast to the loss of 3 to 4 log units of viability when treated at the early log phase.(More)
Wnt signalling is one of the fundamental cell communication systems operating in the embryo and the collection of 19 Wnt and 10 Frizzled (Fzd) receptor genes (in mouse and human) represent just part of a complex system to be unravelled. Here we present a spatially comprehensive set of data on the 3D distribution of Wnt and Fzd gene expression patterns at a(More)
TCF11 is a ubiquitous transcription factor of the CNC-bZIP family. The activity of this vital protein is strictly regulated and we have previously published that the two major translated protein forms show a clearly different transactivation ability in transient transfections. Only the full-length form is active in a variety of mammalian cells [J. Biol.(More)
Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing(More)
Mechanical forces are essential for normal adult bone function and repair, but the impact of prenatal muscle contractions on bone development remains to be explored in depth in mammalian model systems. In this study, we analyze skeletogenesis in two 'muscleless' mouse mutant models in which the formation of skeletal muscle development is disrupted;(More)
Muscle contractions begin in early embryonic life, generating forces that regulate the correct formation of the skeleton. In this paper we test the hypothesis that the biophysical stimulation generated by muscle forces may be a causative factor for the changes in shape of the knee joint as it grows. We do this by predicting the spatial and temporal patterns(More)