Paula Mello de Luca

Learn More
CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses(More)
A primate model of leishmaniasis was developed with the objective of future vaccine testing. Lesion development and immunological parameters were studied upon primary and secondary infections. Seven Cebus apella were injected subcutaneously with 2 x 10(6) Leishmania (Leishmania) amazonensis promastigotes. Erythematous nodules appeared 19-29 days p.i., which(More)
There have been exhaustive efforts to develop an efficient vaccine against leishmaniasis. Factors like host and parasite genetic characteristics, virulence, epidemiological scenarios, and, mainly, diverse immune responses triggered by Leishmania species make the achievement of this aim a complex task. It is already clear that the induction of a Th1,(More)
Development of immunoprotection against visceral leishmaniasis (VL) focused on the identification of antigens capable of inducing a Th1 immune response. Alternatively, antigens targeting the CD8 and T-regulatory responses are also relevant in VL pathogenesis and worthy of being included in a preventive human vaccine. We assessed in active and cured patients(More)
INTRODUCTION Purpureocillium lilacinum is emerging as a causal agent of hyalohyphomycosis that is refractory to antifungal drugs; however, the pathogenic mechanisms underlying P. lilacinum infection are not understood. In this study, we investigated the interaction of P. lilacinum conidia with human macrophages and dendritic cells in vitro. METHODS Spores(More)
The Leishmania (Leishmania) donovani nucleoside hydrolase NH36 is the main antigen of the Leishmune® vaccine and one of the promising candidates for vaccination against visceral leishmaniasis. The antigenicity of the N-terminal (F1), the central (F2), or the C-terminal recombinant domain (F3) of NH36 was evaluated using peripheral blood mononuclear cells(More)
Ultrasoft X-rays are useful for mechanistic studies of ionizing radiation damage in living cells due to the localized nature of their energy depositions. To date radiobiology experiments in this energy region have relied on characteristic X-rays (mainly Alk and Ck) from X-ray tubes. However, limitations in the photon intensity and the available energies(More)
  • 1