Learn More
Delayed-rectifier K+ currents (I(DR)) in pancreatic beta-cells are thought to contribute to action potential repolarization and thereby modulate insulin secretion. The voltage-gated K+ channel, K(V)2.1, is expressed in beta-cells, and the biophysical characteristics of heterologously expressed channels are similar to those of I(DR) in rodent beta-cells. A(More)
Voltage-gated potassium (Kv) channels regulate many physiological functions and represent important therapeutic targets in the treatment of several clinical disorders. Although some of these channels have been well-characterized, the study of others, such as Kv3 channels, has been hindered because of limited pharmacological tools. The current study was(More)
Several analogs of 2,3-diaryl pyrroles were synthesized and evaluated as inhibitors of Eimeria tenella cGMP-dependent protein kinase and in in vivo anticoccidial assays. A 4-fluorophenyl group enhances both in vitro and in vivo activities. The most potent analogs are the 5-(N-methyl, N-ethyl, and N-methylazetidine methyl) piperidyl derivatives 12, 23, and(More)
A novel fungal metabolite, apicidin [cyclo(N-O-methyl-L-tryptophanyl-L -isoleucinyl-D-pipecolinyl-L-2-amino-8-oxodecanoyl)], that exhibits potent, broad spectrum antiprotozoal activity in vitro against Apicomplexan parasites has been identified. It is also orally and parenterally active in vivo against Plasmodium berghei malaria in mice. Many Apicomplexan(More)
The trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl]pyridine (Compound 1) inhibits the growth of Eimeria spp. both in vitro and in vivo. The molecular target of Compound 1 was identified as cGMP-dependent protein kinase (PKG) using a tritiated analogue to purify a approximately 120-kDa protein from lysates of Eimeria(More)
Apicidin's indole was efficiently converted into a series of N-substituted quinolone derivatives by indole N-alkylation followed by a two-step, one-pot, ozonolysis/aldol condensation protocol. The new quinolones exhibited good parasite selectivity and potency both at the level of their molecular target, histone deacetylase, and in their whole cell(More)
Apicidin, a natural product recently isolated at Merck, inhibits both mammalian and protozoan histone deacetylases (HDACs). The conversion of apicidin, a nanomolar inhibitor of HDACs, into a series of side-chain analogues that display picomolar enzyme affinity is described within this structure-activity study.
Recently isolated at Merck, apicidin inhibits both mammalian and protozoan histone deacetylases (HDACs). The conversion of apicidin, a nonselective nanomolar inhibitor of HDACs, into a series of picomolar indole-modified and parasite-selective tryptophan-replacement analogues is described within this structure-activity study.
Clinical treatment of neuropathic pain can be achieved with a number of different drugs, some of which interact with all members of the voltage-gated sodium channel (NaV1) family. However, block of central nervous system and cardiac NaV1 channels can cause dose-limiting side effects, preventing many patients from achieving adequate pain relief. Expression(More)
A protocol is presented for the purification of sporozoites from sporulated oocysts of Eimeria tenella. Two Percoll density gradients are the basis of the purification. The first gradient is used after glass-bead grinding to purify undamaged sporocysts; 87% of the sporocysts loaded onto the gradient were recovered in the pellet. The second gradient is used(More)