Learn More
Telomere erosion and subsequent dysfunction limits the proliferation of normal human cells by a process termed replicative senescence. Replicative senescence is thought to suppress tumorigenesis by establishing an essentially irreversible growth arrest that requires activities of the p53 and pRB tumor suppressor proteins. We show that, depending on(More)
The ability to express or deplete proteins in living cells is crucial for the study of biological processes. Viral vectors are often useful to deliver DNA constructs to cells that are difficult to transfect by other methods. Lentiviruses have the additional advantage of being able to integrate into the genomes of non-dividing mammalian cells. However,(More)
We report here the molecular cloning of an approximately 1-Mb region of recurrent amplification at 20q13.2 in breast cancer and other tumors and the delineation of a 260-kb common region of amplification. Analysis of the 1-Mb region produced evidence for five genes, ZNF217, ZNF218, and NABC1, PIC1L (PIC1-like), CYP24, and a pseudogene CRP (Cyclophillin(More)
Transition through telomere crisis is thought to be a crucial event in the development of most breast carcinomas. Our goal in this study was to determine where this occurs in the context of histologically defined breast cancer progression. To this end, we assessed genome instability (using fluorescence in situ hybridization) and other features associated(More)
Nonmalignant human mammary epithelial cells (HMEC) seeded in laminin-rich extracellular matrix (lrECM) form polarized acini and, in doing so, transit from a disorganized proliferating state to an organized growth-arrested state. We hypothesized that the gene expression pattern of organized and growth-arrested HMECs would share similarities with breast(More)
Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by(More)
Estrogen, progesterone, and HER2 receptor-negative triple-negative breast cancers encompass the most clinically challenging subtype for which targeted therapeutics are lacking. We find that triple-negative tumors exhibit elevated MYC expression, as well as altered expression of MYC regulatory genes, resulting in increased activity of the MYC pathway. In(More)
The functional consequences of overexpression of a candidate oncogene on chromosome 20q13.2, ZNF217, were examined by transducing the gene into finite life span human mammary epithelial cells (HMECs). In four independent experiments, ZNF217-transduced cultures gave rise to immortalized cells. HMECs that overcame senescence initially exhibited heterogeneous(More)
UNLABELLED The transcription factor ZNF217 is a candidate oncogene in the amplicon on chromosome 20q13 that occurs in 20% to 30% of primary human breast cancers and that correlates with poor prognosis. We show that Znf217 overexpression drives aberrant differentiation and signaling events, promotes increased self-renewal capacity, mesenchymal marker(More)
Chromosome 20q13.2 is amplified in 20-30% of early-stage breast tumors and is associated with poor prognosis. Detailed mapping of the amplified region using molecular cytogenetics, positional cloning and genomic sequencing culminated in a detailed molecular description of the candidate oncogene ZNF217. ZNF217 proteins resemble Kruppel-like transcription(More)