Learn More
The theory of artificial neural networks is briefly reviewed focusing on supervised and unsupervised techniques which have great impact on current chemical applications. An introduction to molecular descriptors and representation schemes is given. In addition, worked examples of recent advances in this field are highlighted and pioneering publications are(More)
Cleavage sites in nuclear-encoded mitochondrial protein targeting peptides (mTPs) from mammals, yeast, and plants have been analysed for characteristic physicochemical features using statistical methods, perceptrons, multilayer neural networks, and self-organizing feature maps. Three different sequence motifs were found, revealing loosely defined arginine(More)
Four different artificial neural network architectures have been tested for their suitability to extract and predict sequence features. For optimization of the network weights an evolutionary computing method has been applied. The networks have feedforward architecture and provide adaptive neural filter systems for pattern recognition in primary structures(More)
A method for the rational design of locally encoded amino acid sequence features using artificial neural networks and a technique for simulating molecular evolution has been developed. De novo in machine design of Escherichia coli leader peptidase (SP1) cleavage sites serves as an example application. A modular neural network system that employs sequence(More)
De novo designed signal peptidase I cleavage sites were tested for their biological activity in vivo in an Escherichia coli expression and secretion system. The artificial cleavage site sequences were generated by two different computer-based design techniques, a simple statistical method, and a neural network approach. In previous experiments, a neural(More)
The gene encoding for bacterio-opsin (bop gene) from Halobacterium halobium has been introduced in a yeast expression vector. After transformation in Schizosaccharomyces pombe, bacterio-opsin (BO) is expressed and was detected by antisera. The precursor protein of BO (pre-BO) is processed by cleavage of amino acids at the N-terminal end as in H. halobium.(More)
BACKGROUND Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the(More)
Important and relevant information is expected to be encoded in local structural elements of proteins. An unsupervised learning algorithm (Kohonen algorithm) was applied to the representation and unbiased classification of local backbone structures contained in a set of proteins. Training yielded a two-dimensional Kohonen feature map with 100 different(More)
The control of infectious diseases such as swine influenza viruses (SwIV) plays an important role in food production both from the animal health and from the public health point of view. Probiotic microorganisms and other health improving food supplements have been given increasing attention in recent years, but, no information on the effects of probiotics(More)
Artificial neural networks were used for extraction of characteristic physiochemical features from mitochondrial matrix metalloprotease target sequences. The amino acid properties hydrophobicity and volume were used for sequence encoding. A window of 12 residues was employed, encompassing positions -7 to +5 of precursors with cleavage sites. Two sets of(More)