Learn More
BACKGROUND Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). METHODOLOGY/PRINCIPAL FINDINGS A laboratory-scale sequencing batch reactor was successfully operated for different(More)
An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage(More)
Tandem high-throughput proteomics and metabolomics were employed to functionally characterize natural microbial biofilm communities. Distinct molecular signatures exist for each analyzed sample. Deconvolution of the high-resolution molecular data demonstrates that identified proteins and detected metabolites exhibit organism-specific correlation patterns.(More)
Human plasma has long been a rich source for biomarker discovery. It has recently become clear that plasma RNA molecules, such as microRNA, in addition to proteins are common and can serve as biomarkers. Surveying human plasma for microRNA biomarkers using next generation sequencing technology, we observed that a significant fraction of the circulating RNA(More)
Community genomic data have revealed multiple levels of variation between and within microbial consortia. This variation includes large-scale differences in gene content between ecosystems as well as within-population sequence heterogeneity. In the present review, we focus specifically on how fine-scale variation within microbial and viral populations is(More)
Mixed microbial communities are complex, dynamic and heterogeneous. It is therefore essential that biomolecular fractions obtained for high-throughput omic analyses are representative of single samples to facilitate meaningful data integration, analysis and modeling. We have developed a new methodological framework for the reproducible isolation of(More)
The visualization of metagenomic data, especially without prior taxonomic identification of reconstructed genomic fragments, is a challenging problem in computational biology. An ideal visualization method should, among others, enable clear distinction of congruent groups of sequences of closely related taxa, be applicable to fragments of lengths typically(More)
During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise(More)
Large-scale 'meta-omic' projects are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human(More)
  • Luisa W. Hugerth, Emilie E. L. Muller, Yue O. O. Hu, Laura A. M. Lebrun, Hugo Roume, Daniel Lundin +2 others
  • 2014
High-throughput sequencing of ribosomal RNA gene (rDNA) amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant(More)