Learn More
We develop mathematical models to examine the formation, growth and quorum sensing activity of bacterial biofilms. The growth aspects of the model are based on the assumption of a continuum of bacterial cells whose growth generates movement, within the developing biofilm, described by a velocity field. A model proposed in Ward et al. (2001) to describe(More)
In gram-negative bacterial pathogens, such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis, cell-to-cell communication via the N-acylhomoserine lactone (AHL) signal molecules is involved in the cell population density-dependent control of genes associated with virulence. This phenomenon, termed quorum sensing, relies upon the accumulation of AHLs(More)
Mutations in the seven clustered rpf genes cause downregulated synthesis of extracellular enzymes and reduced virulence of Xanthomonas campestris pathovar campestris (Xcc). The phenotype of mutants in one of the genes, rpfF, can be restored by a diffusible extracellular factor (DSF) produced by all Xcc strains tested, apart from rpfF and rpfB mutants. DSF(More)
Pseudomonas aeruginosa produces 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a quorum-sensing (QS) signal that regulates numerous virulence genes including those involved in iron scavenging. Biophysical analysis revealed that 2-alkyl-3-hydroxy-4-quinolones form complexes with iron(III) at physiological pH. The overall stability constant of(More)
RNA and DNA expression vectors containing genes for chloramphenicol acetyltransferase, luciferase, and beta-galactosidase were separately injected into mouse skeletal muscle in vivo. Protein expression was readily detected in all cases, and no special delivery system was required for these effects. The extent of expression from both the RNA and DNA(More)
HD-GYP is a protein domain of unknown biochemical function implicated in bacterial signaling and regulation. In the plant pathogen Xanthomonas campestris pv. campestris, the synthesis of virulence factors and dispersal of biofilms are positively controlled by a two-component signal transduction system comprising the HD-GYP domain regulatory protein RpfG and(More)
Recent studies of British bumblebees have proposed a seemingly simple explanation for the decline in some species: that greater dietary specialization among the rarer species has put them at greater risk. However, comparisons of dietary specialization require: (1) that bees have access to the same dietary options among which to make their choices; (2) that(More)
An LC-MS/MS method, using positive mode electrospray ionization, for the simultaneous, quantitative and targeted profiling of the N-acyl-L-homoserine lactone (AHL) and 2-alkyl 4-(1H)-quinolone (AQ) families of bacterial quorum-sensing signaling molecules (QSSMs) is presented. This LC-MS/MS technique was applied to determine the relative molar ratios of AHLs(More)
In Pseudomonas aeruginosa, diverse exoproduct virulence determinants are regulated via N-acylhomoserine lactone-dependent quorum sensing. Here we show that 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) is also an integral component of the quorum sensing circuitry and is required for the production of rhl-dependent exoproducts at the onset of stationary phase.(More)
The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine(More)