Learn More
Articular cartilage, a connective tissue that provides resistance to compressive forces during joint movements, has not been examined in detail by conventional Fourier transform infrared (FTIR) spectroscopy, microspectroscopy (FTIRM), or imaging (FTIRI). The current study reports FTIRM and FTIRI analyses of normal bovine cartilage and identifies the(More)
Fourier-transform infrared microspectroscopy (FTIRM) allows analysis of mineral content, mineral crystal maturity and mineral composition at ~10-μ spatial resolution. Previous FTIRM analyses comparing 4-μ thick sections from non-decalcified iliac crest biopsies from women with post-menopausal osteoporosis, as contrasted with iliac crest tissue from(More)
A preliminary investigation into the diagnostic potential of an infrared fiber optic probe (IFOP) for evaluating degenerative human articular cartilage is described. Twelve arthritic human tibial plateaus obtained during arthroplasty were analyzed using the IFOP. Infrared spectra were obtained from IFOP contact with articular surface sites visually graded(More)
Land cover prediction is essential for monitoring global environmental change. Unfortunately, traditional classification models are plagued by temporal variation and emergence of novel/unseen land cover classes in the prediction process. In this paper, we propose an LSTM-based spatio-temporal learning framework with a dual-memory structure. The dual-memory(More)
Collagenase treatment of cartilage serves as an in vitro model of the pathological collagen degradation that occurs in the disease osteoarthritis (OA). Fourier transform infrared imaging spectroscopic (FT-IRIS) analysis of collagenase-treated cartilage is performed to elucidate the molecular origin of the spectral changes previously found at the articular(More)
OBJECTIVE: Little is known about how the biochemical properties of collagen change during tissue regeneration following cartilage damage. In the current study, temporal changes in cartilage repair tissue biochemistry were assessed in a rabbit osteochondral defect. DESIGN: Bilateral full thickness 3mm osteochondral trochlear groove defects were created in(More)
Plantation mapping is important for understanding deforestation and climate change. Most existing plantation products rely heavily on visual interpretation of satellite imagery, which results in both false positives and false negatives. In this paper we aim to design an automatic framework that map plantations in large regions. Conventional classification(More)