Paul Wach

Learn More
Linear approaches like the minimum-norm least-square algorithm show insufficient performance when it comes to estimating the activation time map on the surface of the heart from electrocardiographic (ECG) mapping data. Additional regularization has to be considered leading to a nonlinear problem formulation. The Gauss-Newton approach is one of the standard(More)
An iterative algorithm based on a general regularization scheme for nonlinear ill-posed problems in Hilbert scales (method A) is applied to the magnetocardiographic inverse problem imaging the surface myocardial activation time map. This approach is compared to an algorithm using an optimization routine for nonlinear ill-posed problems based on Tikhonov's(More)
In clinical electrocardiography, the zero-potential is commonly defined by the Wilson central terminal. In the electrocardiographic forward and inverse problem, the zero-potential is often defined in a different way, e.g., by the sum of all node potentials yielding zero. This study presents relatively simple to implement techniques, which enable the(More)
  • 1