Learn More
The microtubule-associated protein tau can associate with various other proteins in addition to tubulin, including the SH3 domains of Src family tyrosine kinases. Tau is well known to aggregate to form hyperphosphorylated filamentous deposits in several neurodegenerative diseases (tauopathies) including Alzheimer disease. We now report that tau can bind to(More)
The increased production of amyloid beta-peptide (Abeta) in Alzheimer's disease is acknowledged to be a key pathogenic event. In this study, we examined the response of primary human and rat brain cortical cultures to Abeta administration and found a marked increase in the tyrosine phosphorylation content of numerous neuronal proteins, including tau and(More)
Ubiquitin-positive intraneuronal inclusions are a consistent feature of the major human neurodegenerative diseases, suggesting that dysfunction of the ubiquitin proteasome system is central to disease etiology. Research using inhibitors of the 20S proteasome to model Parkinson's disease is controversial. We report for the first time that specifically 26S(More)
The ubiquitin-like modifier FAT10 targets proteins for degradation by the proteasome and is activated by the E1 enzyme UBA6. In this study, we identify the UBA6-specific E2 enzyme (USE1) as an interaction partner of FAT10. Activated FAT10 can be transferred from UBA6 onto USE1 in vitro, and endogenous USE1 and FAT10 can be coimmunoprecipitated from intact(More)
UNLABELLED Three novel missense mutations of SQSTM1 were identified in familial PDB, all affecting the UBA domain. Functional and structural analysis showed that disease severity was related to the type of mutation but was unrelated to the polyubiquitin-binding properties of the mutant UBA domain peptides. INTRODUCTION Mutations affecting the(More)
The 26S proteasome is a large multiprotein complex involved in the regulated degradation of ubiquitinated proteins in the cell. The 26S proteasome has been shown to control an increasing number of essential biochemical mechanisms of the cellular lifecycle including DNA synthesis, repair, transcription, translation, and cell signal transduction.(More)
The p62 protein (also known as SQSTM1) mediates diverse cellular functions including control of NFkappaB signaling and transcriptional activation. p62 binds non-covalently to ubiquitin and co-localizes with ubiquitylated inclusions in a number of human protein aggregation diseases. Mutations in the gene encoding p62 cause Paget's disease of bone (PDB), a(More)
The p62 protein functions as a scaffold in signaling pathways that lead to activation of NF-kappaB and is an important regulator of osteoclastogenesis. Mutations affecting the receptor activator of NF-kappaB signaling axis can result in human skeletal disorders, including those identified in the C-terminal ubiquitin-associated (UBA) domain of p62 in(More)
Accumulation of proteins in inclusions in neurological disorders is partly due to dysfunction of the ubiquitin-proteasome system. Proteasomal dysfunction may be caused by misexpression of one or more of its subunits. A large number of antibodies reactive with proteasome subunits were screened on material from patients exhibiting tau- and synucleinopathies.(More)
UNLABELLED We have studied the effects of various PDB-causing mutations of SQSTM1 on the in vitro ubiquitin-binding properties of the p62 protein. All mutations caused loss of monoubiquitin-binding and impaired K48-linked polyubiquitin-binding, which was only evident at physiological temperature. This suggests that SQSTM1 mutations predispose to PDB through(More)