Paul V Ruijgrok

Learn More
So far, single-molecule imaging has predominantly relied on fluorescence detection. We imaged single nonfluorescent azo dye molecules in room-temperature glycerol by the refractive effect of the heat that they release in their environment upon intense illumination. This photothermal technique provides contrast for the absorbing objects only, irrespective of(More)
We present the first quantitative measurements of the torque exerted on a single gold nanorod in a polarized three-dimensional optical trap. We determined the torque both by observing the time-averaged orientation distribution and by measuring the dynamics of the rotational brownian fluctuations. The measurements are in good agreement with calculations,(More)
We demonstrate a simple way of making individual 20 nm gold nanoparticles fluorescent (with a fluorescence quantum yield of about 10(-6)) in glycerol. Gold NPs prepared in such a way have bright fluorescence for a long time under moderate excitation, and their fluorescence remains when the solvent is exchanged to water. We propose to use these nanoparticles(More)
Fluorescence lifetimes of nitrogen-vacancy color centers in individual diamond nanocrystals were measured at the interface between a glass substrate and a strongly scattering medium. Comparison of the results with values recorded from the same nanocrystals at the glass-air interface revealed fluctuations of fluorescence lifetimes in the scattering medium.(More)
We combine ultrafast pump-probe spectroscopy with optical trapping to study homogeneous damping of the acoustic vibrations of single gold nanospheres (80 nm diameter) and nanorods (25 nm diameter by 60 nm length) in water. We find a significant particle-to-particle variation in damping times. Our results indicate that vibrational damping occurs not only by(More)
  • 1