Learn More
Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases,(More)
The mitochondrial DNA of trypanosomatid protozoa, termed kinetoplast DNA (kDNA), is unique in its structure, function, and mode of replication. kDNA is a massive network, composed of thousands of topologically interlocked DNA circles, which resembles the chain mail of medieval armor. Each cell contains one network condensed into a disk-shaped structure(More)
RNA interference is a powerful method for inhibition of gene expression in Trypanosoma brucei (Ngo, H., Tschudi, C., Gull, K., and Ullu, E. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 14687-14692). Here we describe a vector (pZJM) for in vivo tetracycline-inducible synthesis of double-stranded RNA (dsRNA) in stably transformed cells. The dsRNA is synthesized(More)
Kinetoplast DNA is a network of interlocked minicircles and maxicircles. In situ hybridization, using probes detected by digital fluorescence microscopy, has clarified the in vivo structure and replication mechanism of the network. The probe recognizes only nicked minicircles. Hybridization reveals prereplication kinetoplasts (with closed minicircles),(More)
We studied the function of a Trypanosoma brucei topoisomerase II using RNA interference (RNAi). Expression of a topoisomerase II double-stranded RNA as a stem-loop caused specific degradation of mRNA followed by loss of protein. After 6 days of RNAi, the parasites' growth rate declined and the cells subsequently died. The most striking phenotype upon(More)
All eukaryotic and prokaryotic organisms are thought to synthesize fatty acids using a type I or type II synthase. In addition, eukaryotes extend pre-existing long chain fatty acids using microsomal elongases (ELOs). We have found that Trypanosoma brucei, a eukaryotic human parasite that causes sleeping sickness, uses three elongases instead of type I or(More)
One of the most fascinating and unusual features of trypanosomatids, parasites that cause disease in many tropical countries, is their mitochondrial DNA. This genome, known as kinetoplast DNA (kDNA), is organized as a single, massive DNA network formed of interlocked DNA rings. In this review, we discuss recent studies on kDNA structure and replication,(More)
Trypanosoma brucei use microsomal elongases for de novo synthesis of most of its fatty acids. In addition, this parasite utilizes an essential mitochondrial type II synthase for production of octanoate (a lipoic acid precursor) as well as longer fatty acids such as palmitate. Evidence from other organisms suggests that mitochondrially synthesized fatty(More)
Kinetoplast DNA (kDNA), the unusual mitochondrial DNA of Trypanosoma brucei, is a network containing thousands of catenated circles. Database searching for a kDNA replicative polymerase (pol) revealed no mitochondrial pol gamma homolog. Instead, we identified four proteins (TbPOLIA, IB, IC, and ID) related to bacterial pol I. Remarkably, all four localized(More)