Paul Strodel

Learn More
Bacteriorhodopsin is a proton-pumping membrane protein found in the plasma membrane of the archaeon Halobacterium salinarium. Light-induced isomerization of the retinal chromophore from all-trans to 13-cis leads to a sequence of five conformation-coupled proton transfer steps and the net transport of one proton from the cytoplasmic to the extracellular side(More)
Rhodopsins can modulate the optical properties of their chromophores over a wide range of wavelengths. The mechanism for this spectral tuning is based on the response of the retinal chromophore to external stress and the interaction with the charged, polar, and polarizable amino acids of the protein environment and is connected to its large change in dipole(More)
The mechanism of color tuning in the rhodopsin family of proteins has been studied by comparing the optical properties of the light-driven proton pump bacteriorhodopsin (bR) and the light detector sensory rhodopsin II (sRII). Despite a high structural similarity, the maximal absorption is blue-shifted from 568 nm in bR to 497 nm in sRII. The molecular(More)
Using the X-ray structure of a recently discovered bacterial protein, the N-acetylneuraminic acid-inducible channel (NanC), we investigate computationally K(+) and Cl(-) ions' permeation. We identify ion permeation pathways that are likely to be populated using coarse-grain Monte Carlo simulations. Next, we use these pathways as reaction coordinates for(More)
The Division of Molecular Biophysics I examines molecular and genomic structure problems with the help of bio-physical and computer scientific methods and develops computer simulation methods for their modelling on the genomic, molecular and electronic levels. The German EMBnet node-GENIUSnet-is a biocom-puting facility for German scientists providing(More)
  • 1