Learn More
We study the nonequilibrium steady state of a mechanical resonator in the quantum regime realized by a suspended carbon nanotube quantum dot in contact with two ferromagnets. Because of the spin-orbit interaction and/or an external magnetic field gradient, the spin on the dot couples directly to the flexural eigenmodes. Accordingly, the nanomechanical(More)
For the work programme BIOTOPMONITORING VIENNA of the Austrian Health Institute, multi-spectral airborne scanner data have been recorded in the intention of automation supported identification and classification of forests and green urban areas in Vienna. Before multi-spectral and textural image analysis can be performed, the scanner data have to be(More)
We study the ground-state cooling of a mechanical oscillator linearly coupled to the charge of a quantum dot inserted between a normal metal and a superconducting contact. Such a system can be realized, e.g., by a suspended carbon nanotube quantum dot with a capacitive coupling to a gate contact. Focusing on the subgap transport regime, we analyze the(More)
In order to fully exploit the potential of renewable energy resources (RERs) for building applications, optimal design and control of the different energy systems is a compelling challenge to address. This paper presents a two-step multi-objective optimization approach to size both thermal and electrical energy systems in regard of thermo-economic(More)
  • 1