Paul Schulze‐Lefert

Learn More
Nonhost resistance describes the immunity of an entire plant species against nonadapted pathogen species. We report that Arabidopsis PEN2 restricts pathogen entry of two ascomycete powdery mildew fungi that in nature colonize grass and pea species. The PEN2 glycosyl hydrolase localizes to peroxisomes and acts as a component of an inducible preinvasion(More)
In plants, defence against specific isolates of a pathogen can be triggered by the presence of a corresponding race-specific resistance gene, whereas resistance of a more broad-spectrum nature can result from recessive, presumably loss-of-regulatory-function, mutations. An example of the latter are mlo mutations in barley, which have been successful in(More)
Mutation-induced recessive alleles (mlo) of the barley Mlo locus confer a leaf lesion phenotype and broad spectrum resistance to the fungal pathogen, Erysiphe graminis f. sp. hordei. The gene has been isolated using a positional cloning approach. Analysis of 11 mutagen-induced mlo alleles revealed mutations leading in each case to alterations of the deduced(More)
Plant disease resistance (R) genes trigger innate immune responses upon pathogen attack. RAR1 is an early convergence point in a signaling pathway engaged by multiple R genes. Here, we show that RAR1 interacts with plant orthologs of the yeast protein SGT1, an essential regulator in the cell cycle. Silencing the barley gene Sgt1 reveals its role in R(More)
The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization(More)
Plant immune responses are triggered by pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs) or by resistance (R) proteins recognizing isolate-specific pathogen effectors. We show that in barley, intracellular mildew A (MLA) R proteins function in the nucleus to confer resistance against the powdery mildew(More)
Arabidopsis thaliana is a host to the powdery mildew Erysiphe cichoracearum and nonhost to Blumeria graminis f. sp hordei, the powdery mildew pathogenic on barley (Hordeum vulgare). Screening for Arabidopsis mutants deficient in resistance to barley powdery mildew identified PENETRATION3 (PEN3). pen3 plants permitted both increased invasion into epidermal(More)
The barley Mla locus encodes 28 characterized resistance specificities to the biotrophic fungal pathogen barley powdery mildew. We describe a single-cell transient expression assay using entire cosmid DNAs to pinpoint Mla1 within the complex 240-kb Mla locus. The MLA1 cDNA encodes a 108-kD protein containing an N-terminal coiled-coil structure, a central(More)
Failure of pathogenic fungi to breach the plant cell wall constitutes a major component of immunity of non-host plant species--species outside the pathogen host range--and accounts for a proportion of aborted infection attempts on 'susceptible' host plants (basal resistance). Neither form of penetration resistance is understood at the molecular level. We(More)
Barley Rar1 is a convergence point in the signaling of resistance to powdery mildew, triggered by multiple race-specific resistance (R) genes. Rar1 is shown to function upstream of H2O2 accumulation in attacked host cells, which precedes localized host cell death. We isolated Rar1 by map-based cloning. The sequence of the deduced 25.5 kDa protein reveals(More)