Paul S. Andry

Learn More
Three-dimensional (3D) silicon integration of active devices with through-silicon vias (TSVs), thinned silicon, and silicon-to-silicon fine-pitch interconnections offers many product benefits. Advantages of these emerging 3D silicon integration technologies can include the following: power efficiency, performance enhancements, significant product(More)
Three-dimensional (3D) integration using through-silicon vias (TSVs) and low-volume lead-free solder interconnects allows the formation of high signal bandwidth, fine pitch, and short-distance interconnections in stacked dies. There are several approaches for 3D chip stacking including chip to chip, chip to wafer, and wafer to wafer. Chip-to-chip(More)
Three-dimensional (3D) integration technology promises to continue enhancing integrated-circuit system performance with high bandwidth, low latency, low power, and a small form factor for a variety of applications. In this work, conventional C4 (controlled-collapse chip connection) technology is studied for robust interconnection between stacked thin chips.(More)
System-on-Package (SOP) technology based on silicon carriers has the potential to provide modular design flexibility and high-performance integration of heterogeneous chip technologies and to support robust chip manufacturing with high-yield/low-cost chips for a wide range of two-and three-dimensional product applications. Key technology enablers include(More)
This paper presents a three-dimensional (3D) fully integrated high-speed multiphase voltage regulator. A complete switched-inductor regulator is integrated with a four-plane NoC in a two-high chip stack combining integrated magnetics, through-silicon vias (TSVs), and 45-nm SOI CMOS devices. Quasi-V 2 hysteretic control is implemented over eight(More)
  • 1