Paul R. Shearing

Learn More
Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and(More)
A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a(More)
We report the results from an operando XRD-CT study of a working catalytic membrane reactor for the oxidative coupling of methane. These results reveal the importance of the evolving solid state chemistry during catalytic reaction, particularly the chemical interaction between the catalyst and the oxygen transport membrane.
Physical characteristics critical to chromatography including geometric porosity and tortuosity within the packed column were analysed based upon three dimensional reconstructions of bed structure in-situ. Image acquisition was performed using two X-ray computed tomography systems, with optimisation of column imaging performed for each sample in order to(More)
AIMS The aim of this study was to compare the design of the generic OptiStem XTR femoral stem with the established Exeter femoral stem. MATERIALS AND METHODS We obtained five boxed, as manufactured, implants of both designs at random (ten in total). Two examiners were blinded to the implant design and independently measured the mass, volume, trunnion(More)
A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO2 to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the(More)
Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques,(More)
The performance and durability of electrochemical power systems are determined by a complex interdependency of many complex and interrelated factors, temperature and heat transfer being particularly important. This has led to an increasing interest in the use of thermal imaging to understand both the fundamental phenomena and effects of operation on the(More)