Learn More
— This paper addresses the problem of selecting contact locations for grasping objects in the presence of shape and contact location uncertainty. Focusing on two-dimensional planar objects and two finger grasps for simplicity, we present a principled approach for selecting contact points by analyzing the risk of force closure failure. The key contribution(More)
Previous research has shown that the brain uses statistical knowledge of both sensory and motor accuracy to optimize behavioral performance. Here, we present the results of a novel experiment in which participants could control both of these quantities at once. Specifically, maximum performance demanded the simultaneous choices of viewing and movement(More)
Visual perception involves the grouping of individual elements into coherent patterns, such as object representations, that reduce the descriptive complexity of a visual scene. The computational and physiological bases of this perceptual remain poorly understood. We discuss recent fMRI evidence from our laboratory where we measured activity in a higher(More)
Perceptual multistability refers to the phenomenon of spontaneous perceptual switching between two or more likely interpretations of an image. Although frequently explained by processes of adaptation or hysteresis, we show that perceptual switching can arise as a natural byproduct of perceptual decision making based on probabilistic (Bayesian) inference,(More)
To successfully lift an object, a person's fingers must be moved to locations where forces can be applied that are sufficient for maintaining contact and that allow for easy object manipulation. Obtaining such finger positions becomes more difficult when there is perceptual uncertainty about the location of the hand and object. However, knowledge about the(More)
Due to noisy motor commands and imprecise and ambiguous sensory information, there is often substantial uncertainty about the relative location between our body and objects in the environment. Little is known about how well people manage and compensate for this uncertainty in purposive movement tasks like grasping. Grasping objects requires reach(More)
Humans build representations of objects and their locations by integrating imperfect information from multiple perceptual modalities (e.g., visual, haptic). Because sensory information is specified in different frames of reference (i.e., eye- and body-centered), it must be remapped into a common coordinate frame before integration and storage in memory.(More)
Many enterprises that participate in dynamic markets need to make product pricing and inventory resource utilization decisions in real-time. We describe a family of statistical models that address these needs by combining characterization of the economic environment with the ability to predict future economic conditions to make tactical (short-term)(More)