Paul R. Schrater

Learn More
Visual perception involves the grouping of individual elements into coherent patterns that reduce the descriptive complexity of a visual scene. The physiological basis of this perceptual simplification remains poorly understood. We used functional MRI to measure activity in a higher object processing area, the lateral occipital complex, and in primary(More)
Visual perception involves the grouping of individual elements into coherent patterns, such as object representations, that reduce the descriptive complexity of a visual scene. The computational and physiological bases of this perceptual remain poorly understood. We discuss recent fMRI evidence from our laboratory where we measured activity in a higher(More)
Perceptual multistability refers to the phenomenon of spontaneous perceptual switching between two or more likely interpretations of an image. Although frequently explained by processes of adaptation or hysteresis, we show that perceptual switching can arise as a natural byproduct of perceptual decision making based on probabilistic (Bayesian) inference,(More)
To successfully lift an object, a person’s fingers must be moved to locations where forces can be applied that are sufficient for maintaining contact and that allow for easy object manipulation. Obtaining such finger positions becomes more difficult when there is perceptual uncertainty about the location of the hand and object. However, knowledge about the(More)
This paper addresses the problem of selecting contact locations for grasping objects in the presence of shape and contact location uncertainty. Focusing on two-dimensional planar objects and two finger grasps for simplicity, we present a principled approach for selecting contact points by analyzing the risk of force closure failure. The key contribution of(More)
Adaptation to a moving visual pattern induces shifts in the perceived motion of subsequently viewed moving patterns. Explanations of such effects are typically based on adaptation-induced sensitivity changes in spatio-temporal frequency tuned mechanisms (STFMs). An alternative hypothesis is that adaptation occurs in mechanisms that independently encode(More)
Modeling spatial context (e.g., autocorrelation) is a key challenge in classification problems that arise in geospatial domains. Markov random fields (MRF) is a popular model for incorporating spatial context into image segmentation and land-use classification problems. The spatial autoregression (SAR) model, which is an extension of the classical(More)
We have measured the relationship between image contrast, perceived contrast, and BOLD fMRI activity in human early visual areas, for natural, whitened, pink noise, and white noise images. As root-mean-square contrast increases, BOLD response to natural images is stronger and saturates more rapidly than response to the whitened images. Perceived contrast(More)
Previous research has shown that the brain uses statistical knowledge of both sensory and motor accuracy to optimize behavioral performance. Here, we present the results of a novel experiment in which participants could control both of these quantities at once. Specifically, maximum performance demanded the simultaneous choices of viewing and movement(More)