Paul R. Schmitzer

Learn More
A novel phenyltriazole acetic acid compound (DAS734) produced bleaching of new growth on a variety of dicotyledonous weeds and was a potent inhibitor of Arabidopsis (Arabidopsis thaliana) seedling growth. The phytotoxic effects of DAS734 on Arabidopsis were completely alleviated by addition of adenine to the growth media. A screen of(More)
Pyrimidine bases are rapidly catabolized in growing plant tissues. The final enzyme of the catabolic pathway, beta-ureidopropionase (beta-UP; EC 3.5.1.6), was partially purified from the shoots of etiolated maize (Zea mays) seedlings. The enzyme had a K(m) for beta-ureidopropionate (the substrate derived from uracil) of 11 microM. Only one enantiomer of(More)
A multiyear effort to identify new natural products was built on a hypothesis that both phytotoxins from plant pathogens and antimicrobial compounds might demonstrate herbicidal activity. The discovery of one such compound, mevalocidin, is described in the current report. Mevalocidin was discovered from static cultures of two unrelated fungal isolates(More)
2,4-Dihydro-4-(beta-D-ribofuranosyl)-1,2,4(3H)-triazol-3-one (2) was identified as the principal phytotoxic component of a fermentation broth derived from an Actinomadura. The compound is a new natural product, but known by synthesis. Broad-spectrum herbicidal activity was demonstrated in greenhouse tests. Metabolite reversal studies suggested the target(More)
Multiple classes of commercially important auxin herbicides have been discovered since the 1940s including the aryloxyacetates (2,4-D, MCPA, dichlorprop, mecoprop, triclopyr, and fluroxypyr), the benzoates (dicamba), the quinoline-2-carboxylates (quinclorac and quinmerac), the pyrimidine-4-carboxylates (aminocyclopyrachlor), and the pyridine-2-carboxylates(More)
  • 1