Paul R C Kent

Learn More
We investigate Monte Carlo energy and variance-minimization techniques for optimizing many-body wave functions. Several variants of the basic techniques are studied, including limiting the variations in the weighting factors that arise in correlated sampling estimations of the energy and its variance. We investigate the numerical stability of the techniques(More)
We investigate the accuracy of first-principles many-body theories at the nanoscale by comparing the low-energy excitations of the carbon fullerenes C(20), C(24), C(50), C(60), C(70), and C(80) with experiment. Properties are calculated via the GW-Bethe-Salpeter equation and diffusion quantum Monte Carlo methods. We critically compare these theories and(More)
A combination of density functional theory (DFT) calculations and experiments is used to shed light on the relation between surface structure and Li-ion storage capacities of the following functionalized two-dimensional (2D) transition-metal carbides or MXenes: Sc2C, Ti2C, Ti3C2, V2C, Cr2C, and Nb2C. The Li-ion storage capacities are found to strongly(More)
The higher the chemical diversity and structural complexity of two-dimensional (2D) materials, the higher the likelihood they possess unique and useful properties. Herein, density functional theory (DFT) is used to predict the existence of two new families of 2D ordered, carbides (MXenes), M'2M″C2 and M'2M″2C3, where M' and M″ are two different early(More)
We have applied the many-body ab initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure and the energetics of the oxygen vacancy, zinc interstitial, and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging(More)
We have applied the diffusion quantum Monte Carlo (DMC) method to calculate the cohesive energy and the structural parameters of the binary oxides CaO, SrO, BaO, Sc2O3, Y2O3, and La2O3. The aim of our calculations is to systematically quantify the accuracy of the DMC method to study this type of metal oxides. The DMC results were compared with local,(More)
Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrödinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few(More)
Lithium-ion batteries have the potential to revolutionize the transportation industry, as they did for wireless communication. A judicious choice of the liquid electrolytes used in these systems is required to achieve a good balance among high-energy storage, long cycle life and stability, and fast charging. Ethylene-carbonate (EC) and propylene-carbonate(More)
Further developments are introduced in the theory of nite size errors in quantum many{body simulations of extended systems using periodic boundary conditions. We show that our recently introduced Model Periodic Coulomb interaction A. J. Williamson et al., Phys. Rev. B 55, R4851 (1997)] can be applied consistently to all Coulomb interactions in the system.(More)
Rechargeable non-lithium-ion (Na(+), K(+), Mg(2+), Ca(2+), and Al(3+)) batteries have attracted great attention as emerging low-cost and high energy-density technologies for large-scale renewable energy storage applications. However, the development of these batteries is hindered by the limited choice of high-performance electrode materials. In this work,(More)