Paul N. Mortenson

Learn More
A procedure for analyzing and classifying publicly available crystal structures has been developed. It has been used to identify high-resolution protein-ligand complexes that can be assessed by reconstructing the electron density for the ligand using the deposited structure factors. The complexes have been clustered according to the protein sequences, and(More)
In the validation of protein-ligand docking protocols, performance is mostly measured against native protein conformers, i.e. each ligand is docked into the protein conformation from the structure that contained that ligand. In real-life applications, however, ligands are docked against non-native conformations of the protein, i.e. the apo structure or a(More)
trans-Sialidase from Trypanosoma cruzi (TcTS) has emerged as a potential drug target for treatment of Chagas disease. Here, we report the results of virtual screening for the discovery of novel TcTS inhibitors, which targeted both the sialic acid and sialic acid acceptor sites of this enzyme. A library prepared from the Evotec database of commercially(More)
Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was(More)
A key challenge in many drug discovery programs is to accurately assess the potential value of screening hits. This is particularly true in fragment-based drug design (FBDD), where the hits often bind relatively weakly, but are correspondingly small. Ligand efficiency (LE) considers both the potency and the size of the molecule, and enables us to estimate(More)
This paper addresses two questions of key interest to researchers working with protein-ligand docking methods: (i) Why is there such a large variation in docking performance between different test sets reported in the literature? (ii) Are fragments more difficult to dock than druglike compounds? To answer these, we construct a test set of in-house X-ray(More)
The synthesis and antibacterial activities of three chemotypes of DNA supercoiling inhibitors based on imidazolo[1,2-a]pyridine and [1,2,4]triazolo[1,5-a]pyridine scaffolds that target the ATPase subunits of DNA gyrase and topoisomerase IV (GyrB/ParE) is reported. The most potent scaffold was selected for optimization leading to a series with potent(More)
Screening methods seek to sample a vast chemical space in order to identify starting points for further chemical optimisation. Fragment based drug discovery exploits the superior sampling of chemical space that can be achieved when the molecular weight is restricted. Here we show that commercially available fragment space is still relatively poorly sampled(More)
A novel series of HDAC inhibitors demonstrating class I subtype selectivity and good oral bioavailability is described. The compounds are potent enzyme inhibitors (IC₅₀ values less than 100 nM), and improved activity in cell proliferation assays was achieved by modulation of polar surface area (PSA) through the introduction of novel linking groups.(More)
Neuropeptidases specialize in the hydrolysis of the small bioactive peptides that play a variety of signaling roles in the nervous and endocrine systems. One neuropeptidase, neurolysin, helps control the levels of the dopaminergic circuit modulator neurotensin and is a member of a fold group that includes the antihypertensive target angiotensin converting(More)