Paul Michel Vanhoutte

Learn More
Endothelial cells synthesize and release vasoactive mediators in response to various neurohumoural substances (e.g. bradykinin or acetylcholine) and physical stimuli (e.g. cyclic stretch or fluid shear stress). The best-characterized endothelium-derived relaxing factors are nitric oxide and prostacyclin. However, an additional relaxant pathway associated(More)
The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO). The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations,(More)
Endothelial dysfunction plays a key role in the pathogenesis of diabetic vascular disease. The endothelium controls the tone of the underlying vascular smooth muscle through the production of vasodilator mediators. The endothelium-derived relaxing factors (EDRF) comprise nitric oxide (NO), prostacyclin, and a still elusive endothelium-derived(More)
Experiments were designed to determine the effects of oxygen-derived free radicals on the production and biological activity of endothelium-derived relaxing factor or factors released by acetylcholine. Rings of canine coronary arteries without endothelium (bioassay rings) were superfused with solution passing through a canine femoral artery with(More)
Endothelial cells synthesize and release various factors that regulate angiogenesis, inflammatory responses, hemostasis, as well as vascular tone and permeability. Endothelial dysfunction has been associated with a number of pathophysiological processes. Oxidative stress appears to be a common denominator underlying endothelial dysfunction in cardiovascular(More)
The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms.(More)
In the spontaneously hypertensive rat (SHR) and aging Wistar-Kyoto rats (WKY), acetylcholine releases an endothelium-derived contracting factor (EDCF) produced by endothelial cyclooxygenase-1, which stimulates thromboxane A2 receptors (TP receptors) on vascular smooth muscle. The purpose of the present study was to identify this EDCF by measuring changes in(More)
To study the mechanism of decreased endothelium-dependent relaxations in spontaneously hypertensive rats (SHR), rings of thoracic aorta with and without endothelium were taken from age-matched male SHR and normotensive Wistar-Kyoto rats (WKY) and suspended for isometric tension recording. Acetylcholine caused endothelium-dependent contractions in quiescent(More)
BACKGROUND AND PURPOSE To investigate the dysfunction of vascular smooth muscle in streptozotocin-induced diabetic rats. EXPERIMENTAL APPROACH Rings without endothelium of femoral arteries were suspended in organ chambers for isometric tension recording. The production of oxygen-derived free radicals was measured with 2',7'-dichlorodihydrofluorescein(More)
BACKGROUND AND PURPOSE Experiments were designed to assess whether or not the intracellular concentration of calcium and reactive oxygen species (ROS) increase in endothelial cells of the rat thoracic aorta in response to releasers of endothelium-derived contracting factor (EDCF) and if so, whether or not a difference exists between spontaneously(More)