Learn More
We developed a deep-ultraviolet (UV) microscope capable of imaging cell mitosis and motility at 280 nm for 45 min with minimal UV-induced toxicity, and for 6 h before the onset of visible cell death in cultured human and mouse cells. Combined with computational methods that convert the intensity of each pixel into an estimate of mass, deep-UV microscopy(More)
The cellular mechanism underlying the generation of beta-amyloid in Alzheimer disease and its relationship to the normal metabolism of the amyloid precursor protein are unknown. In this report, we show that 3- and 4-kDa peptides derived from amyloid precursor protein are normally secreted. Epitope mapping and radiolabel sequence analysis suggest that the(More)
Villin is an actin-binding protein of relative molecular mass (Mr) 95,000 found in the core bundle of microfilaments in brush border microvilli from intestine. In physiological calcium concentrations (less than 1 microM), villin crosslinks actin filaments into bundles. However, in free calcium concentrations (greater than 1 microM), villin severs actin(More)
Networks of cross-linked and bundled actin filaments are ubiquitous in the cellular cytoskeleton, but their elasticity remains poorly understood. We show that these networks exhibit exceptional elastic behavior that reflects the mechanical properties of individual filaments. There are two distinct regimes of elasticity, one reflecting bending of single(More)
The macrophage scavenger receptor is a trimeric membrane glycoprotein with unusual ligand-binding properties which has been implicated in the development of atherosclerosis. The trimeric structure of the bovine type I scavenger receptor, deduced by complementary DNA cloning, contains three extracellular C-terminal cysteine-rich domains connected to the(More)
Podosomes are actin- and fimbrin-containing adhesions at the leading edge of macrophages. In cells transfected with beta-actin-ECFP and L-fimbrin-EYFP, quantitative four-dimensional microscopy of podosome assembly shows that new adhesions arise at the cell periphery by one of two mechanisms; de novo podosome assembly, or fission of a precursor podosome into(More)
The linear and nonlinear viscoelastic response of networks of cross-linked and bundled cytoskeletal filaments demonstrates remarkable scaling with both frequency and applied prestress, which helps elucidate the origins of the viscoelasticity. The frequency dependence of the shear modulus reflects the underlying single-filament relaxation dynamics for 0.1-10(More)
Vorticella convallaria is one of the fastest and most powerful cellular machines. The cell body is attached to a substrate by a slender stalk containing a polymeric structure-the spasmoneme. Helical coiling of the stalk results from rapid contraction of the spasmoneme, an event mediated by calcium binding to a negatively charged polymeric backbone. We use(More)
Characterization of the properties of complex biomaterials using microrheological techniques has the promise of providing fundamental insights into their biomechanical functions; however, precise interpretations of such measurements are hindered by inadequate characterization of the interactions between tracers and the networks they probe. We here show that(More)