Paul M. Voyles

Learn More
As silicon-based transistors in integrated circuits grow smaller, the concentration of charge carriers generated by the introduction of impurity dopant atoms must steadily increase. Current technology, however, is rapidly approaching the limit at which introducing additional dopant atoms ceases to generate additional charge carriers because the dopants form(More)
Measuring picometre-scale shifts in the positions of individual atoms in materials provides new insight into the structure of surfaces, defects and interfaces that influence a broad variety of materials' behaviour. Here we demonstrate sub-picometre precision measurements of atom positions in aberration-corrected Z-contrast scanning transmission electron(More)
Fluctuation electron microscopy is a technique for studying medium-range order in disordered materials. We present an implementation of fluctuation microscopy using nanodiffraction in a scanning transmission electron microscope (STEM) at a spatial resolution varying from 0.8 to 5.0 nm. Compared to conventional TEM (CTEM), the STEM-based technique offers a(More)
We have achieved atomic-resolution imaging of single dopant atoms buried inside a crystal, a key goal for microelectronic device characterization, in Sb-doped Si using annular dark-field scanning transmission electron microscopy. In an amorphous material, the dopant signal is largely independent of depth, but in a crystal, channeling of the electron probe(More)
Fluctuation electron microscopy (FEM) is a quantitative electron microscopy technique in which we use the variance V of spatial fluctuations in nanodiffraction as a function of the diffraction vector magnitude k and real-space resolution R to detect medium-range order in amorphous materials. We have developed a model for V(k, R) from a nanocrystal/amorphous(More)
The quantitative imaging of individual impurity atoms in annular dark-field scanning transmission electron microscopy (ADF-STEM) requires a clear theoretical understanding of ADF-STEM lattice imaging, nearly ideal thin samples, and careful attention to image processing. We explore the theory using plane-wave multislice simulations that show the image(More)
Fast flexible electronics operating at radio frequencies (>1 GHz) are more attractive than traditional flexible electronics because of their versatile capabilities, dramatic power savings when operating at reduced speed and broader spectrum of applications. Transferrable single-crystalline Si nanomembranes (SiNMs) are preferred to other materials for(More)
Precision in both high-resolution TEM and STEM imaging is fundamentally limited by signal to noise, but STEM encounters practical limits before the fundamental limit is reached. Because of the serial acquisition of the image, instabilities in the position of the probe or the sample introduce random and systematic errors in the positions of the atomic(More)
Confocal STEM is a new electron microscopy imaging mode. In a microscope with spherical aberration-corrected electron optics, it can produce three-dimensional (3D) images by optical sectioning. We have adapted the linear imaging theory of light confocal microscopy to confocal STEM and use it to suggest optimum imaging conditions for a confocal STEM limited(More)