Paul M. Voyles

Learn More
As silicon-based transistors in integrated circuits grow smaller, the concentration of charge carriers generated by the introduction of impurity dopant atoms must steadily increase. Current technology, however, is rapidly approaching the limit at which introducing additional dopant atoms ceases to generate additional charge carriers because the dopants form(More)
Fast flexible electronics operating at radio frequencies (>1 GHz) are more attractive than traditional flexible electronics because of their versatile capabilities, dramatic power savings when operating at reduced speed and broader spectrum of applications. Transferrable single-crystalline Si nanomembranes (SiNMs) are preferred to other materials for(More)
We present a procedure for the preparation of physically realistic models of paracrystalline silicon based on a modification of the bond-switching method of Wooten, Winer, and Weaire. The models contain randomly oriented c-Si grains embedded in a disordered matrix. Our technique creates interfaces between the crystalline and disordered phases of Si with an(More)
Hybrid reverse Monte Carlo simulations of the structure of Zr50Cu45Al5 bulk metallic glass incorporating medium-range structure from fluctuation electron microscopy data and short-range structure from an embedded atom potential produce structures with significant fractions of icosahedral- and crystal-like atomic clusters. Similar clusters group together(More)
We have examined the structure and physical properties of paracrystalline molecular dynamics models of amorphous silicon. Simulations from these models show qualitative agreement with the results of recent mesoscale fluctuation electron microscopy experiments on amorphous silicon and germanium. Such agreement is not found in simulations from continuous(More)
Precision in both high-resolution TEM and STEM imaging is fundamentally limited by signal to noise, but STEM encounters practical limits before the fundamental limit is reached. Because of the serial acquisition of the image, instabilities in the position of the probe or the sample introduce random and systematic errors in the positions of the atomic(More)
High-Angle Annular Darkfield Scanning Transmission Electron Microscopy (HAADF-STEM) allows to take images at atomic scale with a contrast proportional to the atomic number. STEM acquires an image line-by-line, pixel-by-pixel leading to characteristic distortions. Furthermore, STEM images of beam sensitive materials have to be taken with short exposure(More)
Energy-dispersive x-ray Spectroscopy (EDS) spectrum imaging in the STEM can be used to create compositionally-sensitive images of materials at atomic resolution [1, 2]. However, the x-ray signal is very weak, so EDS spectrum image data sets are often dominated by Poisson noise. We have applied non-local principle component analysis (NLPCA) [3] to reduce the(More)
Image registration and non-local Poisson principal component analysis (PCA) denoising improve the quality of characteristic x-ray (EDS) spectrum imaging of Ca-stabilized Nd2/3TiO3 acquired at atomic resolution in a scanning transmission electron microscope. Image registration based on the simultaneously acquired high angle annular dark field image(More)
  • 1