Paul M Vossen

Learn More
The avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum encodes a race-specific peptide elicitor that induces a hypersensitive response in tomato plants carrying the complementary resistance gene Cf9. The avr9 gene is highly expressed when C. fulvum is growing in the plant and the elicitor accumulates in infected leaves as a 28-amino acid(More)
Disease resistance in plants is commonly activated by the product of an avirulence (Avr) gene of a pathogen after interaction with the product of a matching resistance (R) gene in the host. In susceptible plants, Avr products might function as virulence or pathogenicity factors. The AVR9 elicitor from the fungus Cladosporium fulvum induces defense responses(More)
The avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is highly induced during infection of tomato plants. Expression of the Avr9 gene can also be induced in vitro when cells are grown on synthetic liquid medium containing little or no nitrogen. The Avr9 promoter contains six copies of the sequence TAGATA and six additional copies of(More)
Isolated hepatocytes from adult male Wistar rats are a suitable experimental model to study the cytotoxicity of chemicals. Indeed, the isolated cells incubated in suspension in a Waymouth medium supplemented with 10% newborn calf serum maintain critical biochemical functions such as cytochrome P-450-dependent monooxygenase activity, glycogen, and protein(More)
The race-specific peptide elicitor AVR9 of the fungus Cladosporium fulvum induces a hypersensitive response only in tomato (Lycopersicon esculentum) plants carrying the complementary resistance gene Cf-9 (MoneyMaker-Cf9). A binding site for AVR9 is present on the plasma membranes of both resistant and susceptible tomato genotypes. We used mutant AVR9(More)
The interaction between the biotrophic fungal pathogen Cladosporium fulvum and tomato complies with the genefor-gene model. Resistance, expressed as a hypersensitive response (HR) followed by other defence responses, is based on recognition of products of avirulence genes from C. fulvum (race-specific elicitors) by receptors (putative products of resistance(More)
The secondary structure and global fold of the AVR9 elicitor protein of Cladosporium fulvum has been determined by 2D NMR and distance-geometry protocols. The protein consists of three anti-parallel strands forming a rigid region of beta-sheet. On the basis of the NMR-derived parameters and distance geometry calculations, it is evident that the AVR9 protein(More)
Olive fruit flies [Bactrocera oleae (Gmelin)] occur at densities in California that can result in intraspecific larval competition within infested fruit. Larval B. oleae densities tracked in the field at six location were found to be highly variable and related to the proportion of fruit infested and adult densities. Egg and larval distribution within the(More)
The race-specific peptide elicitor AVR9 of the fungal pathogen Cladosporium fulvum specifically induces a hypersensitive response in tomato genotypes carrying the complementary resistance gene Cf-9. The total chemical syntheses of this 28-residue AVR9 peptide containing three disulfide bonds, and of three mutant peptides [R8K]AVR9, [F10A]AVR9 and(More)
The fungus Cladosprium fulvum is a biotrophic leaf pathogen of tomato. The fungus develops in the intercellular space without forming specialized feeding structures and does not affect the leaf tissue. The outcome of the C. fulvum-tomato interaction can be described by the gene-for-gene model. Failure of infection is expressed by a hypersensitive response.(More)