Learn More
Formaldehyde inhalation at 6 ppm and above causes nasal squamous cell carcinoma (SCC) in F344 rats. The quantitative implications of the rat tumors for human cancer risk are of interest, since epidemiological studies have provided only equivocal evidence that formaldehyde is a human carcinogen. Conolly et al. (Toxicol. Sci. 75, 432-447, 2003) analyzed the(More)
In addition to industrial sources, benzene is present in the environment as a component of cigarette smoke and automobile emissions. Toxicity of benzene most likely results from oxidative metabolism of benzene to reactive products. However, susceptibility to these toxic effects may be related to a balance between activation (phase I) and detoxication (phase(More)
Formaldehyde induced squamous-cell carcinomas in the nasal passages of F344 rats in two inhalation bioassays at exposure levels of 6 ppm and above. Increases in rates of cell proliferation were measured by T. M. Monticello and colleagues at exposure levels of 0.7 ppm and above in the same tissues from which tumors arose. A risk assessment for formaldehyde(More)
Formaldehyde inhalation at 6 ppm and above causes nasal squamous cell carcinoma (SCC) in F344 rats. The human health implications of this effect are of significant interest since human exposure to environmental formaldehyde is widespread, though at lower concentrations than those that cause cancer in rats. In this article, which is part of a larger effort(More)
The concept that the product of the concentration (C) of a substance and the length of time (t) it is administered produces a fixed level of effect for a given endpoint has been ascribed to Fritz Haber, who was a German scientist in the early 1900s. He contended that the acute lethality of war gases could be assessed by the amount of the gas in a cubic(More)
Benzene is a ubiquitous environmental pollutant that is known to cause hematotoxicity and leukemia in humans. The initial oxidative metabolite of benzene has long been suspected to be benzene oxide (3,5-cyclohexadiene-1,2-oxide). During in vitro experiments designed to characterize the oxidative metabolism of [14C]benzene, a metabolite was detected by(More)
Physiologically based pharmacokinetic (PBPK) models are particularly useful for simulating exposures to environmental toxicants for which, unlike pharmaceuticals, there is often little or no human data available to estimate the internal dose of a putative toxic moiety in a target tissue or an appropriate surrogate. This article reviews the current state of(More)
Low levels of benzene from sources including cigarette smoke and automobile emissions are ubiquitous in the environment. Since the toxicity of benzene probably results from oxidative metabolites, an understanding of the profile of biotransformation of low levels of benzene is critical in making a valid risk assessment. To that end, we have investigated(More)
This study presents a nonlinear system of delay differential equations to model the concentrations of five hormones important for regulation and maintenance of the menstrual cycle. Linear model components for the ovaries and pituitary were previously analyzed and reported separately. Results for the integrated model are now presented here. This model(More)
Interspecies extrapolations of tissue dose and tumor response have been a significant source of uncertainty in formaldehyde cancer risk assessment. The ability to account for species-specific variation of dose within the nasal passages would reduce this uncertainty. Three-dimensional, anatomically realistic, computational fluid dynamics (CFD) models of(More)