Learn More
Stable isotopes are often used as natural labels to quantify the contributions of multiple sources to a mixture. For example, C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source linear mixing model assumes that the proportional contribution of a source to a(More)
Understanding the link between the greenhouse gas carbon dioxide (CO(2)) and Earth's temperature underpins much of paleoclimatology and our predictions of future global warming. Here, we use the inverse relationship between leaf stomatal indices and the partial pressure of CO(2) in modern Ginkgo biloba and Metasequoia glyptostroboides to develop a CO(2)(More)
One of the great debates about extinction is whether humans or climatic change caused the demise of the Pleistocene megafauna. Evidence from paleontology, climatology, archaeology, and ecology now supports the idea that humans contributed to extinction on some continents, but human hunting was not solely responsible for the pattern of extinction everywhere.(More)
The gray wolf (Canis lupus) is one of the few large predators to survive the Late Pleistocene megafaunal extinctions [1]. Nevertheless, wolves disappeared from northern North America in the Late Pleistocene, suggesting they were affected by factors that eliminated other species. Using skeletal material collected from Pleistocene permafrost deposits of(More)
Fractionation of carbon isotopes by plants during CO(2) uptake and fixation (Delta(leaf)) varies with environmental conditions, but quantitative patterns of Delta(leaf) across environmental gradients at the global scale are lacking. This impedes interpretation of variability in ancient terrestrial organic matter, which encodes climatic and ecological(More)
We investigated the impact of foraging location (nearshore vs offshore) and foraging latitude (high vs middle) on the carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen of northern fur seals (Callorhinus ursinus), harbor seals (Phoca vitulina), California sea lions (Zalophus californianus), and northern elephant seals (Mirounga(More)
The carbon, nitrogen, and strontium isotope compositions of elephants in Amboseli Park, Kenya, were measured to examine changes in diet and habitat use since the 1960s. Carbon isotope ratios, which reflect the photosynthetic pathway of food plants, record a shift in diet from trees and shrubs to grass. Strontium isotope ratios, which reflect the geologic(More)
We analyzed the carbon and oxygen isotope composition of tooth enamel from mammals inhabiting marine and terrestrial ecosystems to determine whether these stable isotopes were robust indicators of foraging and habitat preferences. Consumers were separated into six habitats (offshore, nearshore, kelp beds, estuarine, freshwater, terrestrial). Consumer δ13C(More)
An abrupt climate warming of 5 to 10 degrees C during the Palaeocene/Eocene boundary thermal maximum (PETM) 55 Myr ago is linked to the catastrophic release of approximately 1,050-2,100 Gt of carbon from sea-floor methane hydrate reservoirs. Although atmospheric methane, and the carbon dioxide derived from its oxidation, probably contributed to PETM(More)
The foraging ecology of elasmobranchs (sharks, skates, and rays) is difficult to study because species have spatially and temporally diverse diets. Many diet and habitat preference studies for mammals, birds, and teleosts use stable isotope analysis, but interpretations are limited for elasmobranch studies because taxon-specific isotope discrimination(More)