Paul L. Debbage

Learn More
Intravital lectin perfusion was combined with computer-guided scanning digital microscopy to map the perfused elements of the vasculature in tumor-bearing mice. High-precision composite images (spatial precision 1.3 micron and optical resolution 1.5 micron) were generated to permit exact positioning, reconstruction, analysis, and mapping of entire tumor(More)
We previously applied intravital lectin perfusion in mouse models to elucidate mechanisms underlying vascular permeability. The present work transfers this technique to human models, analysing vascular permeability in macro- and microvessels. Human vascular endothelial surface carbohydrate biochemistry differs significantly from its murine counterpart,(More)
PURPOSE To measure microcirculatory changes during chemoirradiation and to correlate perfusion index (PI) values with therapy outcome. MATERIALS AND METHODS Perfusion data in 11 patients with cT3 (clinical staging, tumor invaded the perirectal tissue) rectal carcinoma who underwent preoperative chemoirradiation were analyzed. Perfusion data were acquired(More)
 The endocytic routes of labelled lectins as well as cationic ferritin were studied in cells with a regulated secretion, i.e. pancreatic beta cells, and in constitutively secreting cells, i.e. fibroblasts and HepG2 hepatoma cells, paying particular attention to routes into the Golgi apparatus. Considerable amounts of internalised molecules were taken up(More)
Molecular imaging, first developed to localise antigens in light microscopy, now encompasses all imaging modalities including those used in clinical care: optical imaging, nuclear medical imaging, ultrasound imaging, CT, MRI, and photoacoustic imaging. Molecular imaging always requires accumulation of contrast agent in the target site, often achieved most(More)
High-pressure freezing and freeze-substitution were used to study Golgi ultrastructure and its brefeldin A-induced transformations in HepG2 human hepatoma cells. Cryoimmobilization arrested subcellular dynamics within milliseconds, thus considerably improving the temporal resolution in monitoring the very early effects of high brefeldin concentrations at(More)
Perichondral bone, the circumferential grooves of Ranvier and cartilage canals are features of endochondral bone development. Cartilage canals containing connective tissue and blood vessels are found in the epiphysis of long bones and in cartilaginous anlagen of small and irregular bones. The pattern of cartilage canals seems to be integral to bone(More)
Human placentas of different stages of development were histochemically analyzed for expression of endogenous sugar-binding proteins using a panel of biotin-conjugated, chemically glycosylated probes with specificity for beta-galactosides, alpha-galactosides, alpha-mannosides, alpha-fucosides and alpha-glucosides. Temporal differences in the expression of(More)
Microanatomical evidence is presented that the intercellular fluid (ICF) compartment of the central nervous tissue is lined entirely and exclusively by heavily glycosylated cells, with glycoconjugates exposed primarily at the apical cell surface, fronting the CSF or blood. On both common ependymal cells and on those specialised to form the choroid plexus(More)
The physical and chemical parameters involved in the design and synthesis of biospecifically targeted nanoparticulate contrast media for magnetic resonance molecular imaging (MRMI) were explored in this pilot investigation. Latex nanoparticles 100, 400 and 900 nm in diameter were doubly derivatised, first with tomato lectin and then with(More)