Learn More
O ne of the apparent fundamental principles of biological evolution is that the progression from ancient to advanced life forms is inseparably connected to an increase in regulatory capacity. Genome-sequencing efforts have provided evidence for a positive correlation between the proportion of genes involved in information processing and the complexity of(More)
Pathogen-inducible plant promoters contain multiple cis-acting elements, only some of which may contribute to pathogen inducibility. Therefore, we made defined synthetic promoters containing tetramers of only a single type of element and present evidence that a range of cis-acting elements (boxes W1, W2, GCC, JERE, S, Gst1, and D) can mediate local gene(More)
We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family(More)
BACKGROUND Although numerous factors can influence gene expression, promoters are perhaps the most important component of the regulatory control process. Promoter regions are often defined as a region upstream of the transcriptional start. They contain regulatory elements that interact with regulatory proteins to modulate gene expression. Most genes possess(More)
Precise control of transgene expression is pivotal to the engineering of plants with increased disease resistance. Many early attempts to boost disease resistance used constitutive overexpression of defence components but frequently this resulted in poor quality plants. It is now clear that the extensive cellular reprogramming associated with defence will(More)
BACKGROUND Regulation of gene expression at the level of transcription is a major control point in many biological processes. Transcription factors (TFs) can activate and/or repress the transcriptional rate of target genes and vascular plant genomes devote approximately 7% of their coding capacity to TFs. Global analysis of TFs has only been performed for(More)
A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies(More)
BACKGROUND Cowpea, Vigna unguiculata (L.) Walp., is one of the most important food and forage legumes in the semi-arid tropics because of its drought tolerance and ability to grow on poor quality soils. Approximately 80% of cowpea production takes place in the dry savannahs of tropical West and Central Africa, mostly by poor subsistence farmers. Despite its(More)
The purpose of this project was to identify metabolites, proteins, genes, and promoters associated with water stress responses in soybean. A number of these may serve as new targets for the biotechnological improvement of drought responses in soybean (Glycine max). We identified metabolites, proteins, and genes that are strongly up or down regulated during(More)
Drought is one of the major challenges affecting crop productivity and yield. However, water stress responses are notoriously multigenic and quantitative with strong environmental effects on phenotypes. It is also clear that water stress often does not occur alone under field conditions but rather in conjunction with other abiotic stresses such as high(More)