Byungchul Cho8
Ricky T O'Brien6
Benjamin J Cooper4
Learn More
This document is the report of a task group of the AAPM and has been prepared primarily to advise medical physicists involved in the external-beam radiation therapy of patients with thoracic, abdominal, and pelvic tumors affected by respiratory motion. This report describes the magnitude of respiratory motion, discusses radiotherapy specific problems caused(More)
Respiration can cause tumors in the thorax or abdomen to move by as much as 3 cm; this movement can adversely affect the planning and delivery of radiation treatment. Several techniques have been used to compensate for respiratory motion, but all have shortcomings. Manufacturers of computed tomography (CT) equipment have recently used a technique developed(More)
The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual(More)
PURPOSE Previous measurements of the accuracy of image-based real-time dynamic multileaf collimator (DMLC) tracking show that the major contributor to errors is latency, i.e., the delay between target motion and MLC response. Therefore the purpose of this work was to develop a method for detailed analysis of latency contributions during image-based DMLC(More)
PURPOSE Irregular breathing causes motion blurring artifacts in 4D PET images. Audiovisual (AV) biofeedback has been demonstrated to improve breathing regularity. To investigate the hypothesis that, compared with free breathing, motion blurring artifacts are reduced with AV biofeedback, the authors performed the first experimental phantom-based(More)
A respiratory training system based on audiovisual biofeedback has been implemented at our institution. It is intended to improve patients' respiratory regularity during four-dimensional (4D) computed tomography (CT) image acquisition. The purpose is to help eliminate the artifacts in 4D-CT images caused by irregular breathing, as well as improve delivery(More)
The problem addressed here was to obtain optimal and deliverable dynamic multileaf collimator (MLC) leaf sequences from four-dimensional (4D) geometries for dynamic MLC tracking delivery. The envisaged scenario was where respiratory phase and position information of the target was available during treatment, from which the optimal treatment plan could be(More)
PURPOSE To develop a real-time target position estimation method using stereoscopic kilovoltage (kV)/megavoltage (MV) imaging and external respiratory monitoring, and to investigate the performance of a dynamic multileaf collimator tracking system using this method. METHODS AND MATERIALS The real-time three-dimensional internal target position estimation(More)
PURPOSE Target tracking is a promising method for motion compensation in radiotherapy. For image-based dynamic multileaf collimator (DMLC) tracking, latency has been shown to be the main contributor to geometrical errors in tracking of respiratory motion, specifically due to slow transfer of image data from the image acquisition system to the tracking(More)
Three major linear accelerator vendors offer gantry-mounted single (monoscopic) x-ray imagers. The use of monoscopic imaging to estimate three-dimensional (3D) target positions has not been fully explored. The purpose of this work is to develop and investigate a robust monoscopic method for real-time tumour tracking, combining occasional x-ray imaging and(More)