Paul J Heaney

Learn More
Sample preparation for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) of DNA is critical for obtaining high quality mass spectra. Sample impurity, solvent content, substrate surface and environmental conditions (temperature and humidity) all affect the rate of matrix-analyte co-crystallization. As a result, laser fluence(More)
Numerous aspects of silica polymorphs can affect their biological activities, including periodic structures, compositional variations, dissolution characteristics, surface properties, and particle size and shape. For an understanding of mineral-induced pathogenesis from a mechanistic perspective, the links between these properties and biochemical processes(More)
An x-ray examination of more than 150 specimens of fine-grained quartz varieties from around the world has revealed that more than 10% and as much as 80% of the silica in many samples is actually moganite, a little-known silica polymorph. Rietveld refinements of 50 powder x-ray diffraction patterns produced by fibrous quartz (agate, chalcedony) and(More)
The apparent mass resolution of oligonucleotides in time-of-flight (TOF) mass spectrometers has been examined. In a reflectron TOF instrument, where the isotopic profile can be completely resolved, the apparent resolution matches the instrument's resolving power. In a linear TOF instrument, unresolved isotopic profiles limit the apparent resolution to much(More)
A new method of sample preparation was developed for MALDI-TOF-MS analysis of oligonucleotides. First, aqueous DNA samples are dispensed and allowed to dry. Then 6-aza-2-thiothymine matrix dissolved in nonaqueous volatile solvents is applied on top of the DNA residue to form a thin homogeneous film. MALDI-TOF analysis shows such preparation generates much(More)
Crystal defects and chemical reactions occurring at scales beyond the resolution of light microscopes have major effects on the chemical and physical properties of rocks and minerals. High-resolution imaging, diffraction, and chemical analysis in the transmission electron microscope have become important methods for exploring mineral defect structures and(More)
  • 1