Paul J. Galardy

Learn More
Monoubiquitination is a reversible post-translational protein modification that has an important regulatory function in many biological processes, including DNA repair. Deubiquitinating enzymes (DUBs) are proteases that are negative regulators of monoubiquitination, but little is known about their regulation and contribution to the control of(More)
Orderly progression through mitosis is regulated by the anaphase-promoting complex/cyclosome (APC/C), a large multiprotein E3 ubiquitin ligase that targets key mitotic regulators for destruction by the proteasome. APC/C has two activating subunits, Cdc20 and Cdh1. The well-established view is that Cdc20 activates APC/C from the onset of mitosis through the(More)
De-ubiquitinating enzymes (DUBs) can reverse the modifications catalyzed by ubiquitin ligases and as such are believed to be important regulators of a variety of cellular processes. Several members of this protein family have been associated with human cancers; however, there is little evidence for a direct link between deregulated de-ubiquitination and(More)
The family of ubiquitin (Ub)-specific proteases (USP) removes Ub from Ub conjugates and regulates a variety of cellular processes. The human genome contains many putative USP-encoding genes, but little is known about USP tissue distribution, pattern of expression, activity, and substrate specificity. We have used a chemistry-based functional proteomics(More)
Most human tumors have abnormal numbers of chromosomes, a condition known as aneuploidy. The mitotic checkpoint is an important mechanism that prevents aneuploidy by restraining the activity of the anaphase-promoting complex (APC). The deubiquitinase USP44 was identified as a key regulator of APC activation; however, the physiological importance of USP44(More)
It is increasingly apparent that ubiquitin (Ub) mediated events are critical in cell proliferation. With much attention placed on the ubiquitin-proteasome pathway as a target for pharmacologic intervention, we must consider the role of deubiquitinating enzymes (DUBs) as regulators of these processes. There is a growing recognition of DUBs that are mutated(More)
Proteasome inhibitors, such as the dipeptide boronic acid bortezomib, are emerging as important tools in the treatment of the fatal hematologic malignancy multiple myeloma. Despite the recent US Food and Drug Administration approval of bortezomib (PS341, Velcade) for the treatment of refractory multiple myeloma, many of the basic pharmacologic parameters of(More)
Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH(More)
The proteasome inhibitor bortezomib has shown impressive clinical activity alone and in combination with conventional and other novel agents for the treatment of multiple myeloma (MM). Although bortezomib is known to be a selective proteasome inhibitor, the downstream mechanisms of cytotoxicity and drug resistance are poorly understood. However, resistance(More)
Multiple myeloma is a B-cell malignancy for which no curative therapies exist to date, despite enormous research efforts. The remarkable activity of the proteasome inhibitor bortezomib (PS-341, Velcade) observed in clinical trials of patients with relapsed refractory myeloma has led to investigations of the role of the ubiquitin-proteasome pathway in the(More)