Learn More
We sought to quantify the contribution of cardiac output (Q) and total vascular conductance (TVC) to carotid baroreflex-mediated changes in mean arterial pressure (MAP) in the upright seated and supine positions. Acute changes in carotid sinus transmural pressure were evoked using brief 5 s pulses of neck pressure and neck suction (NP/NS) via a simplified(More)
Within the past 20 years numerous animal and human experiments have provided supportive evidence of arterial baroreflex resetting during exercise. In addition, it has been demonstrated that both the feedforward mechanism of central command and the feedback mechanism associated with skeletal muscle afferents (the exercise pressor reflex) play both(More)
After considerable debate and key experimental evidence, the importance of the arterial baroreflex in contributing to and maintaining the appropriate neural cardiovascular adjustments to exercise is now well accepted. Indeed, the arterial baroreflex resets during exercise in an intensity-dependent manner to continue to regulate blood pressure as effectively(More)
Acute leg exercise increases brachial artery retrograde shear rate (SR), while chronic exercise improves vasomotor function. These combined observations are perplexing given the proatherogenic impacts of retrograde shear stress on the vascular endothelium and may be the result of brief protocols used to study acute exercise responses. Therefore, we(More)
The present study was designed to characterize respiratory fluctuations in awake, healthy adult humans under resting conditions. For this purpose, we recorded respiratory movements with a strain-gauge pneumograph in 20 subjects. We then used Allan factor, Fano factor, and dispersional analysis to test whether the fluctuations in the number of breaths,(More)
We sought to determine the dynamic relationship between carotid baroreflex (CBR)-mediated control and local control of the skeletal muscle vasculature during dynamic exercise. In 12 subjects (18-35 years old), oscillatory neck pressure (NP, +40 mmHg) was applied at 0.1 Hz (i.e. 5 s on, 5 s off) for 5 min to determine the degree of CBR control over heart(More)
OBJECTIVES Previous studies indicated that oral estrogen increased C-reactive protein by a first-pass hepatic effect. In this study, we determine whether the route of estrogen administration influences serum amyloid A (SAA), another acute-phase protein produced by the liver, and the SAA content of the high-density lipoprotein (HDL-SAA) in postmenopausal(More)
Near-infrared (NIR) spectroscopy is a noninvasive optical technique that is increasingly used to assess muscle oxygenation during exercise with the assumption that the contribution of skin blood flow to the NIR signal is minor or nonexistent. We tested this assumption in humans by monitoring forearm tissue oxygenation during selective cutaneous vasodilation(More)
There is growing evidence to suggest that many disease states are accompanied by chronic elevations in sympathetic nerve activity. The present review will specifically focus on central sympathetic overactivity and highlight three main areas of interest: 1) the pathological consequences of excessive sympathetic nerve activity; 2) the potential role of(More)
The precise role of the sympathetic nervous system in the regulation of skeletal muscle blood flow during exercise has been challenging to define in humans, partly because of the limited techniques available for measuring blood flow in active muscle. Recent studies using near-infrared (NIR) spectroscopy to measure changes in tissue oxygenation have provided(More)