Paul Issartel

Learn More
We present the design and evaluation of an interface that combines tactile and tangible paradigms for 3D visualization. While studies have demonstrated that both tactile and tangible input can be efficient for a subset of 3D manipulation tasks, we reflect here on the possibility to combine the two complementary input types. Based on a field study and(More)
Exploration of volumetric data is an essential task in many scientific fields. However, the use of standard devices, such as the 2D mouse, leads to suboptimal interaction mappings. Several VR systems provide better interaction capabilities, but they remain dedicated and expensive solutions. In this work, we propose an interface that combines tangible tools(More)
We examine a class of techniques for 3D object manipulation on mobile devices, in which the device’s physical motion is applied to 3D objects displayed on the device itself. This “local coupling” between input and display creates specific challenges compared to manipulation techniques designed for monitor-based or immersive virtual environments. Our work(More)
Haptic devices are dedicated to render virtual tactile stimulation. A limitation of these devices is the intrusiveness of their mechanical structures, i.e. the user need to hold or wear the device to interact with the environment. Here, we propose a concept of new tactile device named HAIR. The device is composed of a computer vision system, a mechatronic(More)
We evaluate the performance and usability of mouse-based, touchbased, and tangible interaction for manipulating objects in a 3D virtual environment. This comparison is a step toward a better understanding of the limitations and benefits of these existing interaction techniques, with the ultimate goal of facilitating the integration of different 3D data(More)
In mixed reality, real objects can be used to interact with virtual objects. However, unlike in the real world, real objects do not encounter any opposite reaction force when pushing against virtual objects. The lack of reaction force during manipulation prevents users from perceiving the mass of virtual objects. Although this could be addressed by(More)
We study user preference between allocentric and egocentric 3D manipulation on mobile devices, in a configuration where the motion of the device is applied to an object displayed on the device itself. We first evaluate this preference for translations and for rotations alone, then for full 6-DOF manipulation. We also investigate the role of contextual cues(More)
We present a new approach to achieve tangible object manipulation with a single, fully portable and self-contained device. Our solution is based on the concept of a “tangible volume”. We turn a tangible object into a handheld fish-tank display. The tangible volume represents a volume of space that can be freely manipulated within a virtual scene. This(More)
We evaluate the performance and usability of mouse-based, touch-based, and tangible interaction for manipulating objects in a 3D virtual environment. This comparison is a step toward a better understanding of the limitations and benefits of these existing interaction techniques, with the ultimate goal of facilitating an easy transition between the different(More)