Learn More
Kernel-based algorithms have been a topic of considerable interest in the machine learning community over the last ten years. Their attractiveness resides in their elegant treatment of nonlinear problems. They have been successfully applied to pattern recognition, regression and density estimation. A common characteristic of kernel-based methods is that(More)
Spectral unmixing is an important issue to analyze remotely sensed hyperspectral data. Although the linear mixture model has obvious practical advantages, there are many situations in which it may not be appropriate and could be advantageously replaced by a nonlinear one. In this paper, we formulate a new kernel-based paradigm that relies on the assumption(More)
An operational framework is developed for testing stationarity relatively to an observation scale, in both stochastic and deterministic contexts. The proposed method is based on a comparison between global and local time-frequency features. The originality is to make use of a family of stationary surrogates for defining the null hypothesis of stationarity(More)
In hyperspectral imaging, spectral unmixing is one of the most challenging and fundamental problems. It consists of breaking down the spectrum of a mixed pixel into a set of pure spectra, called endmembers, and their contributions, called abundances. Many endmember extraction techniques have been proposed in literature, based on either a statistical or a(More)
This paper provides new insights into on-line nonlinear sparse approximation of functions based on the coherence criterion. We revisit previous work, and propose tighter bounds on the approximation error based on the coherence criterion. Moreover, we study the connections between the coherence criterion and both the approximate linear dependence criterion(More)
Dynamic system modeling plays a crucial role in the development of techniques for stationary and nonstationary signal processing. Due to the inherent physical characteristics of systems under investigation, nonnegativity is a desired constraint that can usually be imposed on the parameters to estimate. In this paper, we propose a general method for system(More)
  • Paul Honeine
  • IEEE Transactions on Pattern Analysis and Machine…
  • 2012
Kernel principal component analysis (kernel-PCA) is an elegant nonlinear extension of one of the most used data analysis and dimensionality reduction techniques, the principal component analysis. In this paper, we propose an online algorithm for kernel-PCA. To this end, we examine a kernel-based version of Oja's rule, initially put forward to extract a(More)
In this paper, we consider the pre-image problem in kernel machines, such as denoising with kernel-PCA. For a given reproducing kernel Hilbert space (RKHS), by solving the pre-image problem one seeks a pattern whose image in the RKHS is approximately a given feature. Traditional techniques include an iterative technique (Mika et al.) and a multidimensional(More)
Integrating spatial information into hyperspectral unmixing procedures has been shown to have a positive effect on the estimation of fractional abundances due to the inherent spatial-spectral duality in hyperspectral scenes. However, current research works that take spatial information into account are mainly focused on the linear mixing model. In this(More)
The one-class classification problemis often addressed by solving a constrained quadratic optimization problem, in the same spirit as support vector machines. In this paper, we derive a novel one-class classification approach, by investigating an original sparsification criterion. This criterion, known as the coherence criterion, is based on a fundamental(More)