Learn More
In order to identify the extent to which results from topological graph models are useful for modeling vulnerability in electricity infrastructure, we measure the susceptibility of power networks to random failures and directed attacks using three measures of vulnerability: characteristic path lengths, connectivity loss, and blackout sizes. The first two(More)
The topological (graph) structure of complex networks often provides valuable information about the performance and vulnerability of the network. However, there are multiple ways to represent a given network as a graph. Electric power transmission and distribution networks have a topological structure that is straightforward to represent and analyze as a(More)
—Prior research has shown that autocorrelation and variance in voltage measurements tend to increase as power systems approach instability. This paper seeks to identify the conditions under which these statistical indicators provide reliable early warning of instability in power systems. First, the paper derives and validates a semi-analytical method for(More)
derive a measure of " electrical centrality " for AC power networks, which describes the structure of the network as a function of its electrical topology rather than its physical topology. We compare our centrality measure to conventional measures of network structure using the IEEE 300-bus network. We find that when measured electrically, power networks(More)
Numerous recent reports have assessed the adequacy of current generating capacity to meet the growing electricity demand from Plug-in Hybrid Electric Vehicles (PHEVs) and the potential for using these vehicles to provide grid support (Vehicle to Grid, V2G) services. However, little has been written on how these new loads will affect the medium and(More)
Numerous recent papers have found important relationships between network structure and risks within networks. These results indicate that network structure can dramatically affect the relative effectiveness of risk identification and mitigation methods. With this in mind this paper provides a comparative analysis of the topological and electrical structure(More)
Cascading failures in electricity networks cause blackouts, which often lead to severe economic and social consequences. Cascading failures are typically initiated by a set of equipment outages that cause operating constraint violations. When violations persist in a network they can trigger additional outages which in turn may cause further violations. This(More)
—Generating models from large data sets—and determining which subsets of data to mine—is becoming increasingly automated. However, choosing what data to collect in the first place requires human intuition or experience, usually supplied by a domain expert. This paper describes a new approach to machine science which demonstrates for the first time that(More)
—The dynamical behavior of power systems under stress frequently deviates from the predictions of deterministic models. Model-free methods for detecting signs of excessive stress before instability occurs would therefore be valuable. The mathematical frameworks of " fast-slow systems " and " critical slowing down " can describe the statistical behavior of(More)