Learn More
Morphologic polarity is necessary for chemotaxis of mammalian cells. As a probe of intracellular signals responsible for this asymmetry, the pleckstrin homology domain of the AKT protein kinase (or protein kinase B), tagged with the green fluorescent protein (PHAKT-GFP), was expressed in neutrophils. Upon exposure of cells to chemoattractant, PHAKT-GFP is(More)
Like neutrophilic leukocytes, differentiated HL-60 cells respond to chemoattractant by adopting a polarized morphology, with F-actin in a protruding pseudopod at the leading edge and contractile actin-myosin complexes at the back and sides. Experiments with pharmacological inhibitors, toxins, and mutant proteins show that this polarity depends on divergent,(More)
Transmembrane receptors for hormones, neurotransmitters, light, and odorants mediate their cellular effects by activating heterotrimeric guanine nucleotide-binding proteins (G proteins). Crystal structures have revealed contact surfaces between G protein subunits, but not the surfaces or molecular mechanism through which Galphabetagamma responds to(More)
Hormones and sensory stimuli activate serpentine receptors, transmembrane switches that relay signals to heterotrimeric guanine nucleotide-binding proteins (G proteins). To understand the switch mechanism, we subjected 93 amino acids in transmembrane helices III, V, VI, and VII of the human chemoattractant C5a receptor to random saturation mutagenesis. A(More)
A key mediator of eukaryotic chemotaxis is the asymmetric accumulation of phosphatidylinositol-3,4,5-triphosphate (PIP3) on the cell membrane. Recent work has focused on understanding how a shallow external gradient of chemoattractant leads to an amplified internal gradient of PIP3. In this paper we dissect what fraction of this amplification is derived(More)
Luteinizing hormone stimulates testicular Leydig cells to produce testosterone by binding to a receptor that activates the G protein Gs and adenylyl cyclase. Testotoxicosis is a form of precocious puberty in which the Leydig cells secrete testosterone in the absence of luteinizing hormone, often due to constitutive activation of the luteinizing hormone(More)
Agonists for Gi-coupled receptors augment Gs-stimulated cAMP synthesis in human embryonic kidney (HEK) 293 cells transiently expressing the type II isozyme of adenylylcyclase (AC-II). This augmentation, mediated by beta gamma subunits released from activated Gi, can be blocked by expression of the alpha subunit (alpha t) of retinal transducin (Gt), which(More)
We previously characterized LePRK1 and LePRK2, pollen-specific receptor kinases from tomato (Muschietti et al., 1998). Here we identify a similar receptor kinase from maize, ZmPRK1, that is also specifically expressed late in pollen development, and a third pollen receptor kinase from tomato, LePRK3. LePRK3 is less similar to LePRK1 and LePRK2 than either(More)
The elimination of autoreactive T cells occurs via thymocyte apoptosis and removal by thymic phagocytes, but the sequence of events in vivo, and the relationship between thymocyte death and phagocytic clearance, are unknown. Here we address these questions by following a synchronized cohort of thymocytes undergoing negative selection within a(More)
Transmembrane receptors for hormones, neurotransmitters, light, and odorants mediate their cellular effects by activating heterotrimeric guanine nucleotide– binding proteins (G proteins). Crystal structures have revealed contact surfaces between G protein subunits, but not the surfaces or molecular mechanism through which G␣␤␥ responds to activation by(More)