Paul Hagedoorn

Learn More
In the 50 years following the introduction of the first dry powder inhaler to the market, several developments have occurred. Multiple-unit dose and multi-dose devices have been introduced, but first generation capsule inhalers are still widely used for new formulations. Many new particle engineering techniques have been developed and considerable effort(More)
Cascade impactor analysis is the standard technique for in vitro characterization of aerosol clouds generated by medical aerosol generators. One important reason for using this inertial separation principle is that drug fractions are classified into aerodynamic size ranges that are relevant to the deposition in the respiratory tract. Measurement of these(More)
A special single dose collector and a multi stage liquid impinger were used to assess the consistency of delivered dose and fine particle fraction respectively, of the Novopulmon 200 Novolizer (Viatris, Frankfurt, Germany) and Budesonid-ratiopharm Jethaler (Ratiopharm, Ulm, Germany). The obtained average delivered dose from the Jethaler at 4 kPa is 199(More)
Age appropriateness is a major concern of pulmonary delivery devices, in particular of dry powder inhalers (DPIs), since their performance strongly depends on the inspiratory flow manoeuvre of the patient. Previous research on the use of DPIs by children focused mostly on specific DPIs or single inspiratory parameters. In this study, we investigated the(More)
RATIONALE Bronchiectasis is a condition characterised by dilated and thick-walled bronchi. The presence of Pseudomonas aeruginosa in bronchiectasis is associated with a higher hospitalisation frequency and a reduced quality of life, requiring frequent and adequate treatment with antibiotics. OBJECTIVES To assess local tolerability and the pharmacokinetic(More)
An inhaler adapter has been designed for the characterization of the aerosol clouds from medical aerosol generators such as nebulizers, dry powder inhalers (dpis) and metered dose inhalers (mdis) with laser diffraction technology. The adapter has a pre-separator, for separation of large particles (i.e. carrier crystals) from the aerosol cloud before it is(More)
Air classifier technology (ACT) is introduced as part of formulation integrated dry powder inhaler development (FIDPI) to optimise the de-agglomeration of inhalation powders. Carrier retention and de-agglomeration results obtained with a basic classifier concept are discussed. The theoretical cut-off diameter for lactose of the classifier used, is between(More)
The effect of carrier surface properties on drug particle detachment from carrier crystals during inhalation with a special test inhaler with basic air classifier has been studied for mixtures containing 0.4% budesonide. Carrier crystals were retained in the classifier during inhalation and subsequently examined for the amount of residual drug (carrier(More)
In this study, the in vitro fine particle deposition from a multi dose dry powder inhaler (Novolizer) with air classifier technology has been investigated. It is shown that different target values for the fine particle fraction (fpf<5 microm) of the same drug can be achieved in a well-controlled way. This is particularly relevant to the application of(More)
OBJECTIVES To use computational fluid dynamics (CFD) for evaluating and understanding the performance of the high-dose disposable Twincer™ dry powder inhaler, as well as to learn the effect of design modifications on dose entrainment, powder dispersion and retention behaviour. METHODS Comparison of predicted flow and particle behaviour from CFD(More)