Learn More
The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects binary interactions through activation of reporter gene(More)
BACKGROUND 14-3-3 proteins are abundant and conserved polypeptides that mediate the cellular effects of basophilic protein kinases through their ability to bind specific peptide motifs phosphorylated on serine or threonine. RESULTS We have used mass spectrometry to analyze proteins that associate with 14-3-3 isoforms in HEK293 cells. This identified 170(More)
Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional(More)
Observing hand postures interacts with the preparation of similar actions. This may be due to motor encoding of the observed displays and/or to enhanced visual processing induced by motor planning. We studied the effects of the observer's perspective on motor representation, using a visuomotor priming task with simple responses. Participants were asked to(More)
Analysis of key therapeutic targets such as epidermal growth factor receptor (EGFR) in clinical tissue samples is typically done by immunohistochemistry (IHC) and is only subjectively quantitative through a narrow dynamic range. The development of a standardized, highly-sensitive, linear, and quantitative assay for EGFR for use in patient tumor tissue(More)
Ca(V)2.2 voltage-gated calcium channels play a key role in the gating of transmitter release at presynaptic terminals. Recently we used mass spectrometry (MS) to analyze the protein complex associated with Ca(V)2.2 in purified presynaptic terminal membranes. A number of known and new Ca(V)2.2-associated proteins were identified, but not the channel itself.(More)
The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function 1. To date, generation of large-scale protein±protein interaction maps has relied on the yeast two-hybrid system, which detects binary interactions through activation of reporter gene(More)
Protein-tyrosine phosphatases (PTPs), along with protein-tyrosine kinases, play key roles in cellular signaling. All Class I PTPs contain an essential active site cysteinyl residue, which executes a nucleophilic attack on substrate phosphotyrosyl residues. The high reactivity of the catalytic cysteine also predisposes PTPs to oxidation by reactive oxygen(More)
Gamma-aminobutyric acid type A receptors (GABA(A)Rs) that contain the alpha 5 subunit are expressed predominantly in the hippocampus, where they regulate learning and memory processes. Unlike conventional postsynaptic receptors, GABA(A)Rs containing the alpha 5 subunit (alpha 5 GABA(A)Rs) are localized primarily to extrasynaptic regions of neurons, where(More)