Paul H. Barber

Learn More
Halichoeres is a widely distributed coral reef fish genus with high levels of biodiversity in both the Indo-Pacific and New World tropics. This study employed molecular phylogenetic techniques and biogeographic analyses on 1700-1800 bp of mitochondrial CO1, 16s, and 12s to test competing hypotheses regarding the origins of biodiversity in this genus in(More)
To help stem the precipitous decline of coral reef ecosystems world-wide, conservation efforts are focused on establishing interconnected reserve networks to protect threatened populations. Because many coral reef organisms have a planktonic or pelagic larval dispersal phase, it is critical to understand the patterns of ecological connectivity between(More)
Marine species with ranges that span the Indo-Australian Archipelago (IAA) exhibit a range of phylogeographical patterns, most of which are interpreted in the context of vicariance between Indian and Pacific Ocean populations during Pliocene and Pleistocene low sea-level stands. However, patterns often vary among ecologically similar taxa, sometimes even(More)
Natural hybrid zones provide opportunities to study a range of evolutionary phenomena from speciation to the genetic basis of fitness-related traits. We show that widespread hybridization has occurred between two neo-tropical stream fishes with partial reproductive isolation. Phylogenetic analyses of mitochondrial sequence data showed that the swordtail(More)
The Indonesian-Australian Archipelago is the center of the world's marine biodiversity. Although many biogeographers have suggested that this region is a "center of origin," criticism of this theory has focused on the absence of processes promoting lineage diversification in the center. In this study we compare patterns of phylogeographic structure and gene(More)
The rate of change in DNA is an important parameter for understanding molecular evolution and hence for inferences drawn from studies of phylogeography and phylogenetics. Most rate calibrations for mitochondrial coding regions in marine species have been made from divergence dating for fossils and vicariant events older than 1-2 My and are typically 0.5-2%(More)
Endemism is thought to be relatively rare in marine systems due to the lack of allopatric barriers and the potential for long-distance colonization via pelagic larval dispersal. Although many species of coral reef fishes exhibit regionally restricted color variants that are suggestive of regional endemism, such variation is typically ascribed to(More)
The Coral Triangle is the global center of marine biodiversity; however, its coral reefs are critically threatened. Because of the bipartite life history of many marine species with sedentary adults and dispersive pelagic larvae, designing effective marine protected areas requires an understanding of patterns of larval dispersal and connectivity among(More)
Although the recovery of terrestrial communities shattered by the massive eruption of Krakatau in 1883 has been well chronicled, the fate of marine populations has been largely ignored. We examined patterns of genetic diversity in populations of two coral reef-dwelling mantis shrimp, Haptosquilla pulchella and Haptosquilla glyptocercus (Stomatopoda:(More)
Repeated exposure and flooding of the Sunda and Sahul shelves during Pleistocene sea-level fluctuations is thought to have contributed to the isolation and diversification of sea-basin populations within the Coral Triangle. This hypothesis has been tested in numerous phylogeographical studies, recovering an assortment of genetic patterns that the authors(More)