Learn More
We have constituted a consortium of key laboratories at the National Autonomous University of Mexico to carry out a genomic project for Taenia solium. This project will provide powerful resources for the study of taeniasis/cysticercosis, and, in conjunction with the Echinococcus granulosus and Echinococcus multilocularis genome project of expressed sequence(More)
Secretion of Escherichia coli penicillin acylase was improved by codon-based random mutagenesis of its signal peptide. The mutagenesis technology was applied to the gene region coding for positions Lys2 to Thr13 (N half) and Ala14 to Leu25 (C half) of the signal peptide. Protein secretion was higher in several signal peptide variants (up to fourfold with(More)
Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a(More)
BACKGROUND Synthetic DNA has been used to introduce variability into protein-coding regions. In protocols that produce a few mutations per gene, the sampling of amino-acid sequence space is limited by the bias imposed by the genetic code. It has long been apparent that the incorporation of trinucleotides in the synthetic regime would circumvent this problem(More)
BACKGROUND The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP) from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties(More)
Four known and nine new ceftazidime-resistance beta-lactamases were generated by a novel, contaminating codon-based mutagenesis approach. In this method, wild-type codons are spiked with a set of mutant codons during oligonucleotide synthesis, generating random combinatorial libraries of primers that contain few codon replacements per variant. Mutant codons(More)
Twenty Fmoc-protected trinucleotide phosphoramidites representing a complete set of codons for the natural amino acids were chemically synthesized for the first time. A pool of these reagents was incorporated into oligonucleotides at substoichiometric levels to generate two libraries of variants that randomly carry either few or many codon replacements on a(More)
We describe here a method to generate combinatorial libraries of oligonucleotides mutated at the codon-level, with control of the mutagenesis rate so as to create predictable binomial distributions of mutants. The method allows enrichment of the libraries with single, double or larger multiplicity of amino acid replacements by appropriate choice of the(More)
9-fluorenylmethoxycarbonyl (Fmoc) and 4,4'-dimethoxytrityl (DMTr) are orthogonal hydroxyl protecting groups that have been used in conjunction to assemble oligonucleotide libraries whose variants contain wild-type and mutant codons randomly interspersed throughout a focused DNA region. Fmoc is labile to organic bases and stable to weak acids, whereas DMTr(More)
A method to delete in-phase codons throughout a defined target region of a gene has been developed. This approach, named the codon-based random deletion (COBARDE) method, is able to delete complete codons in a random and combinatorial mode. Robustness, automation and fine-tuning of the mutagenesis rate are essential characteristics of the method, which is(More)