Learn More
The cartilage regenerative medicine field has evolved during the last decades. The first-generation technology, autologous chondrocyte transplantation (ACT) involved the transplantation of in vitro expanded chondrocytes to cartilage defects. The second generation involves the seeding of chondrocytes in a three-dimensional scaffold. The technique has several(More)
Bacterial nanocellulose (BNC), synthesized by the bacterium Gluconacetobacter xylinus, is composed of highly hydrated fibrils (99 % water) with high mechanical strength. These exceptional material properties make BNC a novel biomaterial for many potential medical and tissue engineering applications. Recently, BNC with cellulose content of 15 % has been(More)
Adsorption of anionic polyelectrolytes, sodium salts of carboxymethyl celluloses (CMCs) with different degrees of substitution (DS = 0.9 and 1.2), from aqueous electrolyte solutions onto regenerated cellulose surfaces was studied using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) experiments. The(More)
Tissue constructs for cartilage with native mechanical properties have not been described to date. To address this need the bacterial cellulose (BC) secreted by Gluconacetobacter xylinus (= Acetobacter xylinum) was explored as a novel scaffold material due to its unusual material properties and degradability. Native and chemically modified BC materials were(More)
Tissue engineered blood vessels (TEBV) represent an attractive approach for overcoming reconstructive problems associated with vascular diseases by providing small calibre vascular grafts. The aim of this study has been to evaluate a novel biomaterial, bacterial cellulose (BC), as a potential scaffold for TEBV. The morphology of the BC pellicle grown in(More)
Bacterial cellulose (BC) was deposited in tubular form by fermenting Acetobacter xylinum on top of silicone tubes as an oxygenated support and by blowing different concentrations of oxygen, that is, 21% (air), 35%, 50%, and 100%. Mechanical properties such as burst pressure and tensile properties were evaluated for all tubes. The burst pressure of the tubes(More)
The effect of coating modulus on the strength of pseudobarnacle adhesive bonding was investigated. A radical polymerized poly(butylmethacrylate) coating cross-linked with allylmethacrylate was used as a model coating. The coating Tg was determined to be 18 degrees C by differential scanning calorimetry (DSC). Dynamic contact angle measurements (DCA) at(More)
The scaffold is an essential component in tissue engineering. A novel method to prepare three-dimensional (3D) nanofibril network scaffolds with controlled microporosity has been developed. By placing paraffin wax and starch particles of various sizes in a growing culture of Acetobacter xylinum, bacterial cellulose scaffolds of different morphologies and(More)
The biocompatibility of a scaffold for tissue engineered constructs is essential for the outcome. Bacterial cellulose (BC) consists of completely pure cellulose nanofibrils synthesized by Acetobacter xylinum. BC has high mechanical strength and can be shaped into three-dimensional structures. Cellulose-based materials induce negligible foreign body and(More)
Bacterial nanocellulose (BNC) is a novel non-degradable biocompatible material that promotes chondrocyte adhesion and proliferation. In this work, its potential use in ear cartilage tissue engineering (TE) is investigated. Firstly, the mechanical properties of native ear cartilage are measured in order to set a preliminary benchmark for ear cartilage(More)