Learn More
Experiments performed in the field and in the laboratory show that the barnacle, Balanus improvisus, preferentially settles on smooth surfaces. Settlement and recruitment of B. improvisus was evaluated on micro-textured surfaces with scales of surface texture ranging from 1 to 100 mm in profile heights. Surface texture with profile heights within a(More)
Tissue engineered blood vessels (TEBV) represent an attractive approach for overcoming reconstructive problems associated with vascular diseases by providing small calibre vascular grafts. The aim of this study has been to evaluate a novel biomaterial, bacterial cellulose (BC), as a potential scaffold for TEBV. The morphology of the BC pellicle grown in(More)
Tissue constructs for cartilage with native mechanical properties have not been described to date. To address this need the bacterial cellulose (BC) secreted by Gluconacetobacter xylinus (= Acetobacter xylinum) was explored as a novel scaffold material due to its unusual material properties and degradability. Native and chemically modified BC materials were(More)
The cartilage regenerative medicine field has evolved during the last decades. The first-generation technology, autologous chondrocyte transplantation (ACT) involved the transplantation of in vitro expanded chondrocytes to cartilage defects. The second generation involves the seeding of chondrocytes in a three-dimensional scaffold. The technique has several(More)
Bacterial nanocellulose (BNC), synthesized by the bacterium Gluconacetobacter xylinus, is composed of highly hydrated fibrils (99 % water) with high mechanical strength. These exceptional material properties make BNC a novel biomaterial for many potential medical and tissue engineering applications. Recently, BNC with cellulose content of 15 % has been(More)
Adsorption of anionic polyelectrolytes, sodium salts of carboxymethyl celluloses (CMCs) with different degrees of substitution (DS = 0.9 and 1.2), from aqueous electrolyte solutions onto regenerated cellulose surfaces was studied using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) experiments. The(More)
Bacterial cellulose (BC) was deposited in tubular form by fermenting Acetobacter xylinum on top of silicone tubes as an oxygenated support and by blowing different concentrations of oxygen, that is, 21% (air), 35%, 50%, and 100%. Mechanical properties such as burst pressure and tensile properties were evaluated for all tubes. The burst pressure of the tubes(More)
The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning(More)
In this study room temperature vulcanized (RTV) silicone surfaces with designed surface microstructure and well-defined surface chemistry were prepared. Their resistance to marine macrofouling by barnacles Balanus improvisus was tested in field experiments for deducing optimal surface topography dimensions together with a better understanding of(More)
Microscopy techniques based on laser-induced nonlinear optical processes allow for chemically specific imaging of unmodified samples at high spatial resolution in three dimensions and provide powerful tools for characterization of tissue-engineering constructs. This is highlighted by the simultaneous imaging of scaffold material, cells, and produced(More)