Learn More
Bacterial nanocellulose (BNC), synthesized by the bacterium Gluconacetobacter xylinus, is composed of highly hydrated fibrils (99 % water) with high mechanical strength. These exceptional material properties make BNC a novel biomaterial for many potential medical and tissue engineering applications. Recently, BNC with cellulose content of 15 % has been(More)
One of the challenges of bioprinting is to identify bioinks which support cell growth, tissue maturation, and ultimately the formation of functional grafts for use in regenerative medicine. The influence of this new biofabrication technology on biology of living cells, however, is still being evaluated. Recently we have identified a mitogenic hydrogel(More)
BACKGROUND Lignocellulosic biomass from softwood represents a valuable resource for the production of biofuels and bio-based materials as alternatives to traditional pulp and paper products. Hemicelluloses constitute an extremely heterogeneous fraction of the plant cell wall, as their molecular structures involve multiple monosaccharide components,(More)
This work investigates the feasibility of the use of irreversible electroporation (IRE) in the biofabrication of 3D cellulose nanofibril networks via the bacterial strain Gluconacetobacter xylinus. IRE uses electrical pulses to increase membrane permeability by altering the transmembrane potential; past a threshold, damage to the cell becomes too great and(More)
  • 1