Learn More
Vertebrate-striated muscle is assumed to owe its remarkable order to the molecular ruler functions of the giant modular signaling proteins, titin and nebulin. It was believed that these two proteins represented unique results of protein evolution in vertebrate muscle. In this paper we report the identification of a third giant protein from vertebrate(More)
The forked (f) gene of Drosophila melanogaster encodes six different transcripts 6.4, 5.6, 5.4, 2.5, 1.9, and 1.1 kb long. These transcripts arise by the use of alternative promoters. A polyclonal antibody raised against a domain common to all of the forked-encoded products has been used to identify forked proteins on two-dimensional sodium dodecyl(More)
The sarcomeric Z-disk, the anchoring plane of thin (actin) filaments, links titin (also called connectin) and actin filaments from opposing sarcomere halves in a lattice connected by α-actinin. We demonstrate by protein interaction analysis that two types of titin interactions are involved in the assembly of α-actinin into the Z-disk. Titin interacts via a(More)
The giant muscle protein titin (connectin) is essential in the temporal and spatial control of the assembly of the highly ordered sarcomeres (contractile units) of striated muscle. Here we present the crystal structure of titin's only catalytic domain, an autoregulated serine kinase (titin kinase). The structure shows how the active site is inhibited by a(More)
BACKGROUND Alpha-actinin is a ubiquitously expressed protein found in numerous actin structures. It consists of an N-terminal actin binding domain, a central rod domain, and a C-terminal domain and functions as a homodimer to cross-link actin filaments. The rod domain determines the distance between cross-linked actin filaments and also serves as an(More)
The giant muscle protein titin (connectin) is assumed to play a crucial role in the control of Z-disk assembly. Analysis of the Z-disk region of titin/connectin revealed a novel 45 residue repeat that is spliced in variable copy numbers. The repeat region is coexpressed in normal human myocardium in size variants corresponding to between 5 and 7 repeats.(More)
The number of macromolecular structures solved and deposited in the Protein Data Bank (PDB) is higher than 40 000. Using this information in macromolecular crystallography (MX) should in principle increase the efficiency of MX structure solution. This paper describes a molecular-replacement pipeline, BALBES, that makes extensive use of this repository. It(More)
Spectrin repeats are three-helix bundle structures which occur in a large number of diverse proteins, either as single copies or in tandem arrangements of multiple repeats. They can serve structural purposes, by coordination of cytoskeletal interactions with high spatial precision, as well as a 'switchboard' for interactions with multiple proteins with a(More)
Biological macromolecules are polymers and therefore the restraints for macromolecular refinement can be subdivided into two sets: restraints that are applied to atoms that all belong to the same monomer and restraints that are associated with the covalent bonds between monomers. The CCP4 template-restraint library contains three types of data entries(More)