Learn More
The water quality of seven sites on the upper reaches of the River Kennet round the market town of Marlborough is described and related to the introduction of phosphorus treatment of effluent from Marlborough sewage treatment works (STW). The River Kennet is mainly groundwater-fed from a Cretaceous chalk aquifer and hence the river water is calcium- and(More)
This paper brings together information on the water quality functioning of the River Kennet and other parts of the upper River Thames in the south east of England. The Kennet represents a groundwater fed riverine environment impacted by agricultural and sewage sources of nutrient pollution. Descriptions of the general water quality of the area, nutrient(More)
A new model of in-stream phosphorus and macrophyte dynamics, 'The Kennet model', was applied to a reach of the River Kennet, southern England. The reach, which is 1.5 km long, is immediately downstream of Marlborough sewage treatment works, where phosphorus reduction by tertiary effluent treatment began in September 1997. The model is used to simulate the(More)
A regional overview of the water quality and ecology of the River Lee catchment is presented. Specifically, data describing the chemical, microbiological and macrobiological water quality and fisheries communities have been analysed, based on a division into river, sewage treatment works, fish-farm, lake and industrial samples. Nutrient enrichment and the(More)
Steady state and dynamic models have been developed and applied to the River Kennet system. Annual nitrogen exports from the land surface to the river have been estimated based on land use from the 1930s and the 1990s. Long term modelled trends indicate that there has been a large increase in nitrogen transport into the river system driven by increased(More)
Measurements of acid deposition and streamwater chemistry made in 1979-1982 and 1999-2000 are compared for a small, acid-sensitive catchment in Southeast England. The location, geology, soils, vegetation and hydrology of the catchment are described. The catchment is located on an acidic cretaceous sandstone with a low permeability clay sub-stratum. Soils(More)
In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a(More)
A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good(More)
Pathogens are an ongoing issue for catchment water management and quantifying their transport, loss and potential impacts at key locations, such as water abstractions for public supply and bathing sites, is an important aspect of catchment and coastal management. The Integrated Catchment Model (INCA) has been adapted to model the sources and sinks of(More)