Paul G. McKean

Learn More
The 9 + 2 microtubule axoneme of flagella and cilia represents one of the most iconic structures built by eukaryotic cells and organisms. Both unity and diversity are present among cilia and flagella on the evolutionary as well as the developmental scale. Some cilia are motile, whereas others function as sensory organelles and can variously possess 9 + 2(More)
More than 20 years ago, biochemical analysis of the eukaryotic cell cytoskeleton revealed the major component proteins. The heterodimeric (α/β) protein tubulin was defined as the building block of microtubules, assembled in a polar manner into specifically arranged protofilaments in the microtubule wall [1]. The next two members of the tubulin protein(More)
Throughout its elongation, the new flagellum of the procyclic form of the African trypanosome Trypanosoma brucei is tethered at its tip to the lateral aspect of the old flagellum. This phenomenon provides a cytotactic mechanism for influencing inheritance of cellular pattern. Here, we show that this tethering is produced via a discrete, mobile transmembrane(More)
The SHERP genes are found as a tandem pair within the differentially regulated LmcDNA16 locus of Leishmania major. The SHERP gene product (small hydrophilic endoplasmic reticulum-associated protein) is unusual in its small size (6.2 kDa), its acidic pI (4.6) and its exclusive, high-level expression ( approximately 100000 copies per cell) in infective(More)
The flagella connector (FC) of procyclic trypanosomes is a mobile, transmembrane junction important in providing cytotactic morphogenetic information to the daughter cell. Quantitative analyses of FC positioning along the old flagellum, involving direct observations and use of the MPM2 anti-phosphoprotein monoclonal reveals a ;stop point' is reached on the(More)
The LmcDNA16 locus of Leishmania major contains three highly related genes HASPA1, HASPA2 and HASPB, encoding hydrophilic, acylated surface proteins and a tandem pair of unrelated sequences, SHERP1 and SHERP2, coding for a small, hydrophilic protein that localizes to the endoplasmic reticulum and outer mitochondrial membrane. Differential regulation of(More)
Co-translational modification of eukaryotic proteins by N-myristoylation aids subcellular targeting and protein-protein interactions. The enzyme that catalyzes this process, N-myristoyltransferase (NMT), has been characterized in the kinetoplastid protozoan parasites, Leishmania and Trypanosoma brucei. In Leishmania major, the single copy NMT gene is(More)
Although most eukaryotic cells can express multiple isotypes of alphabeta-tubulin, the significance of this diversity has not always been apparent. Recent data indicate that particular alphabeta-tubulin isotypes, both genome encoded and those derived by post-translational modification, can directly influence microtubule structure and function--thus(More)
In common with all eukaryotic cells, trypanosomes must coordinate a complex series of morphogenetic events both temporally and spatially during the cell cycle. The structural and molecular cues that synchronise these events in trypanosomes have started to be elucidated, and intriguingly although similarities to cell cycle events in other eukaryotes can be(More)
During a complex digenetic life cycle flagellated Leishmania parasites alternate between promastigote and amastigote forms which differ significantly in cellular morphology and flagellum length. Recent studies have provided important new insights into mechanisms by which Leishmania regulate expression of genes required for flagellum assembly, and mechanisms(More)